1.
Araki, T., Kasami, T.: Decidable problems on the strong connectivity of Petri net reachability sets. Theor. Comput. Sci 4, 99–119 (1977)
2.
Dickson, L.E.: Finiteness of the odd perfect and primitive abundant numbers with n distinct prime factors. Amer. J. Math. 35, 413–422 (1913)
3.
Ginsburg, S., Spanier, E.H.: Semigroups, Presburger formulas, and languages. Pacific J. Math. 16, 285–296 (1966)
4.
Hack, M.: Decision problems for Petri nets and vector addition systems. M.I.T., Project MAC, MAC-TM 59 (1975)
5.
Hack, M.: Decidability questions for Petri nets. M.I.T., LCS, TR 161 (1976)
6.
Karp, R.M., Miller, R.E.: Parallel program schemata. J. Comput. System Sci. 3, 147–195 (1969)
7.
Keller, R.M.: Vector replacement systems: A formalism for modelling asynchronous systems. Princeton University, CSL, TR 117 (1972)
8.
Keller, R.M.: A fundamental theorem of asynchronous parallel computation. In: Parallel processing. (T.Y. Feng, ed.) Proceedings Sagamore Computer Conference. Lecture Notes in Computer Sciences, Vol. 24, pp. 102–112. Berlin Heidelberg New York: Springer, 1975
9.
Landweber, L.H., Robertson, E.L.: Properties of conflict free and persistent Petri nets. J. Assoc. Comput. Mach. 25, 352–364 (1978)
10.
Lipton, R.J., Miller, R.E., Snyder, L.: Synchronization and computing capabilities of linear asynchronous structures. Proc. 16th Ann. Symp. on FOCS. IEEE Computer Society 1975, pp. 19–28
11.
Müller, H.: Decidability of reachability in persistent vector replacement systems. In: Mathematical Foundations of Computer Science 1980. Proceedings of the 9th Symposium in Rydzyna. (P. Dembinski, ed.) Lecture Notes in Computer Sciences, Vol. 88, pp. 426–438. Berlin Heidelberg New York: Springer (1980)
12.
Muller, D.E., Bantky, M.S.: A theory of asynchronous circuits. Proc. Int. Symp. on Theory of Switching. Cambridge, MA: Harvard Univ. Press, p. 204–243, 1959
13.
Oppen, D.C.: A 318-01 upper bound on the complexity of Presburger arithmetic. J. Comput. System Sci. 16, 323–332 (1978)
14.
Parikh, R.J.: On context-free languages. J. Assoc. Comput. Mach. 13, 570–581 (1966)
15.
Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. Compte-Rendus du I. Congrès des Mathématiciens des pays Slavs, Warsaw, p. 92–101, 1930
16.
Rosen, B.: Tree manipulating systems and Church-Rosser theorems. J. Assoc. Comput. Mach. 20, 160–187 (1973)