1.

R. D. James, The propagation of phase boundaries in elastic bars, *Archive for Rational Mechanics and Analysis.*

2.

M. Shearer, The Riemann problem for a class of conservation laws of mixed type, *J. Differential Equations*
**46** (1982), 426–443.

3.

M. Shearer, Nonuniqueness of admissible solutions of Riemann initial value problems for a system of conservation laws of mixed type, *Archive for Rational Mechanics and Analysis*
**93** (1986), 45–59.

4.

M. Slemrod, Admissibility criteria for propagating phase boundaries in a van der Waals fluid, *Archive for Rational Mechanics and Analysis*
**81** (1983), 301–315.

5.

R. Hagan & M. Slemrod, The viscosity-capillarity criterion for shocks and phase transitions, *Archive for Rational Mechanics and Analysis*
**83** (1984), 333–361.

6.

M. Slemrod, Dynamics of first order phase transition, in *Phase Transformations and Material Instabilities in Solids*, ed. M. Gurtin, Academic Press: New York (1984), 163–203.

7.

C. M. Dafermos, Solution of the Riemann problem for a class of hyperbolic systems of conservation laws by the viscosity method, *Archive for Rational Mechanics and Analysis*
**52** (1973), 1–9.

8.

C. M. Dafermos & R. J. Di Perna, The Riemann problem for certain classes of hyperbolic systems of conservation laws, *J. Differential Equations*
**20** (1976), 90–114.

9.

C. S. Morawetz, On a weak solution for a transonic flow, *Comm. Pure and Applied Math.*
**38** (1985), 797–818.

10.

J. Mawhin, Topological degree methods in nonlinear boundary value problems, Conference Board of Mathematical Sciences Regional Conference Series in Mathematics, No. 40, American Mathematical Society (1979).

11.

I. P. Natanson, Theory of functions of a real variable, Vol. 1, F. Ungar Publishing Co., New York (1955).

12.

M. Shearer, Dynamic phase transitions in a van der Waals gas, to appear *Quarterly of Applied Math.*

13.

A. S. Kalasnikov, Construction of generalized solutions of quasilinear equations of first order without convexity conditions as limits of solutions of parabolic equations with a small parameter, *Dokl. Akad. Nauk. SSR*
**127** (1959), 27–30 (Russian).

14.

V. A. Tupciev, The asymptotic behavior of the solution of the Cauchy problem for the equation ɛ^{2}tu_{xx}=u_{t}+[ϕ(u)]_{x} that degenerates for ξ=0 into the problem of the decay of an arbitrary discontinuity for the case of a rarefraction wave. *Z. Vycisl. Mat. Fiz.*
**12** (1972), 770–775; English translation in *USSR Comput. Math. and Phys.*
**12.**

15.

V. A. Tupciev, On the method of introducing viscosity in the study of problems involving decay of a discontinuity, *Dokl. Akad. Nauk. SSR*
**211** (1973), 55–58; English translation in *Soviet Math. Dokl.*
**14.**

16.

C. M. Dafermos, Structure of solutions of the Riemann problem for hyperbolic systems of conservation laws, *Arch. for Rational Mechanics and Analysis*
**53** (1974), 203–217.