, Volume 236, Issue 2-3, pp 331-340

Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Summary

We characterized the expression of genes that correspond to a cDNA clone, RD29, which is induced by desiccation, cold and high-salt conditions in Arabidopsis thaliana. Northern analysis of desiccation-induced expression revealed a two-step induction process. Early induction occurs within 20 min and secondary induction occurs 3 h after the start of desiccation. Exogenous abscisic acid (ABA) induces RD29 mRNA within 3 h. Two genes corresponding to RD29, rd29A and rd29B, are located in tandem in an 8 kb region of the Arabidopsis genome and encode hydrophilic proteins. Desiccation induces rd29A mRNA with two-step kinetics, while rd29B is induced only 3 h after the start of desiccation. The expression of both genes is stimulated about 3 h after application of ABA. It appears that rd29A has at least two cis-acting elements, one involved in the ABA-associated response to desiccation and the other induced by changes in osmotic potential. The β-glucuronidase (GUS) reporter gene driven by the rd29A promoter was induced at significant levels by desiccation, cold, high-salt conditions and ABA in both transgenic Arabidopsis and tobacco. Histochemical analysis of GUS activity revealed that the rd29A promoter functions in almost all the organs and tissues of vegetative plants during water deficiency.

Communicated by R.G. Herrmann