Theoretical and Computational Fluid Dynamics

, Volume 3, Issue 2, pp 79–93

Complex transition to chaotic flow in a periodic array of cylinders

  • A. Fortin
  • M. Fortin
  • J. J. Gervais
Article

DOI: 10.1007/BF00271618

Cite this article as:
Fortin, A., Fortin, M. & Gervais, J.J. Theoret. Comput. Fluid Dynamics (1991) 3: 79. doi:10.1007/BF00271618

Abstract

This paper presents a numerical study of the transition to chaos of the flow of a Newtonian fluid in a periodic array of cylinders between two parallel walls. Using tools from dynamical system theory, we identify and characterize the different solutions to the Navier-Stokes equations at different values of the Reynolds number. We show that a very complex transition to chaos occurs for this problem where we first observe two incommensurate frequencies and then a frequency locking followed by a few period doublings following Feigenbaum's route to turbulence.

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • A. Fortin
    • 1
  • M. Fortin
    • 2
  • J. J. Gervais
    • 2
  1. 1.Départment de Mathématiques AppliquéesMontréalCanada
  2. 2.Département de Mathématiques et de StatistiquesUniversité LavalQuébecCanada