, Volume 97, Issue 3, pp 213-220

Distribution of insulin binding sites on Leydig cells of rat testes using insulin-coated gold particles

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Summary

The distribution of insulin binding sites in Leydig cells dispersed with collagenase from rat testes was studied using insulin-coated gold particles as an electron opaque ligand. Using electron microscope is convenient to distinguish Leydig cells among a variety of cells in crude preparations by their ultrastructural characteristics. Leydig cells were shown to possess insulin-binding sites on their plasma membranes. Initial binding sites of insulin were located to the microvillous surfaces. Following binding, receptor-ligand complexes seemed to move to the intermicrovillous plasma membrane, then to be internalized. Two modes of the internalization were confirmed. Most of the receptor-ligand complexes on Leydig cells appeared to be internalized via large, uncoated plasma membrane invaginations, while the remainder became internalized via small pits into vesicles. The receptor-ligand complexes were subsequently transferred to large subsurface vacuoles with electron-lucent lumens believed to correspond to endosomes. The reason why IGCs on the postendosomal pathway moving toward lysosomes was also discussed.