, Volume 61, Issue 1, pp 73-79

Nicotiana chloroplast genome III. Chloroplast DNA evolution

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Summary

Nicotiana chloroplast genomes exhibit a high degree of diversity and a general similarity as revealed by restriction enzyme analysis. This property can be measured accurately by restriction enzymes which generate over 20 fragments. However, the restriction enzymes which generate a small number (about 10) of fragments are extremely useful not only in constructing the restriction maps but also in establishing the sequence of ct-DNA evolution. By using a single enzyme, Sma I, a elimination and sequential gain of its recognition sites during the course of ct-DNA evolution is clearly demonstrated. Thus, a sequence of ct-DNA evolution for many Nicotiana species is formulated. The observed changes are all clustered in one region to form a “hot spot” in the circular molecule of ct-DNA. The mechanisms involved for such alterations are mostly point mutations but inversion and deficiency are also indicated. Since there is a close correlation between the ct-DNA evolution and speciation in Nicotiana a high degree of cooperation and coordination betwen organellar and nuclear genomes is evident.

Communicated by D. von Wettstein