, Volume 161, Issue 1, pp 17-24

Spirochaeta caldaria sp. nov., a thermophilic bacterium that enhances cellulose degradation by Clostridium thermocellum

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Two strains of obligately anaerobic, thermophilic spirochetes were isolated from cyanobacterial mat samples collected at freshwater hot springs in Oregon and Utah, USA. The isolates grew optimally between 48° and 52°C, and did not grow at 25° or 60°C. Both strains fermented various pentoses, hexoses, and disaccharides. Amino acids or cellulose did not serve as fermentable substrates for growth. H2, CO2, acetate, and lactate were end products of d-glucose fermentation. On the basis of physiological characteristics, guanine + cytosine content of DNA, and comparisons of 16S ribosomal RNA sequences, it was concluded that the two isolates were representatives of a novel species of Spirochaeta for which the name Spirochaeta caldaria is proposed. One of the two strains was grown in coculture with a thermophilic cellulolytic bacterium (Clostridium thermocellum) in a medium containing cellulose as the only fermentable substrate. In the coculture cellulose was broken down at a faster rate than in the clostridial monoculture. The results are consistent with the suggestion that interactions between cellulolytic bacteria and non-cellulolytic spirochetes enhance cellulose breakdown in natural environments in which cellulose-containing plant material is biodegraded.