1.

R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, “Network flows,” Sloan W.P. No. 2059–88. M.I.T., Cambridge, MA, 1989 also in

*Handbooks in Operations Research and Management Science. Vol. 1 Optimization* G.L. Nemhauser, A.H.G. Rinnooy-Kan, and M.J. Todd (eds.), North-Holland:Amsterdam, 1989, pp. 211–369.

Google Scholar2.

R.K. Ahuja and J.B. Orlin, “A fast and simple algorthm for the maximum flow problem,” working paper, M.I.T., Cambridge, MA, 1986 (also in

*Oper. Res.*, vol. 37, 1989, pp. 748–759).

Google Scholar3.

J.A. Ajevedo, M.E.S. Costa, J.J.S. Madeira, and E.V. Martins, “An algorithm for the ranking of shortest paths,” working paper, Universidade de Coimbra, Coimbra, Portugal, 1991.

Google Scholar4.

J.A. Ajevedo, J.J.S. Madeira, E.V. Martins, and F.M. Pires, “A computational improvement for a shortest paths ranking algorithm,” working paper, Universidade de Coimbra, Coimbra, Portugal, 1991.

Google Scholar5.

D.P. Bertsekas, “The auction algorithm for shortest paths,”

*SIAM J. on Optimization*, vol. 1, 1991, pp. 425–447.

Google Scholar6.

D.P. Bertsekas, “The auction algorithm: A distributed relaxation method for the assignment problem,”

*Annals of Oper. Res.*, vol. 14, 1988, pp. 105–123.

Google Scholar7.

D.P. Bertsekas, “A distributed algorithm for the assignment problem,” working paper, Lab. for Information and Decision Systems, M.I.T., Cambridge, MA, March 1979.

Google Scholar8.

D.P. Bertsekas, “A distributed asynchronous relaxation algorithm for the assignment problem,” in *Proc. 24th IEEE Conf. Dec. and Contr.*, 1985, pp. 1703–1704.

9.

D.P. Bertsekas, “Distributed asynchronous relaxation methods for linear network flow problems,” Lab. for Information and Decision Systems, M.I.T., Report P-1606, Cambridge, MA, November 1986.

Google Scholar10.

D.P. Bertsekas, “Distributed relaxation methods for linear network flow problems,” in *Proc. of 25th IEEE Conf. Dec. and Contr.*, 1986, pp. 2101–2106.

11.

D.P. Bertsekas

*Linear Network Optimization: Algorithms and Codes*, M.I.T. Press, Cambridge, MA, 1991.

Google Scholar12.

D.P. Bertsekas, “A new algorithm for the assignment problem,”

*Math. Programming*, vol. 21, 1981, pp. 152–171.

Google Scholar13.

D.P. Bertsekas and D.A. Castañon, “The auction algorithm for minimum cost network flow Problem,” Laboratory for Information and Decision Systems, M.I.T., Cambridge, MA, November, Report LIDS-P-1925, 1989.

Google Scholar14.

D.P. Bertsekas and D.A. Castañon, “The auction algorithm for transportation problems,” *Annals of Oper. Res.*, vol. 20, pp. 67–96.

15.

D.P. Bertsekas and D.A. Castañon, “A forward/reverse auction, algorithm for the asymmetric assignment problem,” Alphatech Inc. Report, Burlington, MA, April, 1992, *J. of Computational Optimization and its Applications* (to appear).

16.

D.P.Bertsekas and D.A.Castañon “A generic auction algorithm for the minimum cost network flow problem,” Alphatech Inc. Report, Burlington, MA, Sept., 1991.

17.

D.P. Bertsekas and D.A. Castañon, “Parallel synchronous and asynchronous implementations of the auction algorithm,” Alphatech Inc. Report, Burlington, MA, Nov. 1989, (also in *Parallel Computing*, vol. 17, 1991, pp. 707–732).

18.

D.P. Bertsekas, D.A. Castañon, and H. Tsaknakis, “Reverse auction and the solution of inequality constrained assignment problems,” unpublished report, 1991, *SIAM J. on Optimization* (to appear).

19.

D.P. Bertsekas and J. Eckstein, “Distributed asynchronous relaxation methods for linear network flow problems,” *Proc. of IFAC '87*, Munich, Germany, July, 1987.

20.

D.P. Bertsekas and J. Eckstein, “Dual coordinate step methods for linear network flow problems,”

*Math. Progr., Series B*, vol. 42, 1988, pp. 203–243.

Google Scholar21.

D.P. Bertsekas and S.K. Mitter, “Descent numerical methods for optimization problems with nondifferentiable cost functions,” *SIAM J. on Control* vol. 11, pp. 637–652.

22.

D.P. Bertsekas, S. Pallottino, and M.G. Scutella', “Polynomial auction algorithms for shortest paths,” *Lab. for Information and Decision Systems*, Report p. 2107, M.I.T. 1992, submitted for publication.

23.

D.P. Bertsekas and J.N. Tsitsiklis,

*Parallel and Distributed Computation: Numerical Methods*, Prentice-Hall: Englewood Cliffs, NJ, 1989.

Google Scholar24.

D.A. Castañon, “Reverse auction algorithms for assignment problems,” DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 1992.

25.

D. Castañon, B. Smith, and A. Wilson, “Performance of parallel assignment algorithms on different multiprocessor architectures,” Alphatech Inc. Report, Burlington, MA, 1989.

26.

J. Cheriyan and S.N. Maheshwari, “Analysis of preflow push algorithms for maximum network flow,”

*SIAM J. Comput.*, vol. 18, 1989, pp. 1057–1086.

Google Scholar27.

G.B. Dantzig,

*Linear Programming and Extensions*, Princeton Univ. Press: Princeton, NJ, 1963.

Google Scholar28.

S.E. Dreyfus, “An appraisal of some shortest path algorithms,”

*Oper. Res.*, vol. 17, 1969, pp. 395–412.

Google Scholar29.

L.R. FordJr. and D.R. Fulkerson,

*Flows in Networks*, Princeton Univ. Press: Princeton, NJ, 1962.

Google Scholar30.

A.V. Goldberg, “Efficient graph algorithms for sequential and parallel computers,” Laboratory for Computer Science, M.I.T., Cambridge, MA., Tech., Report TR-374, 1987.

Google Scholar31.

A.V. Goldberg, “A new max-flow algorithm,” Laboratory for Computer Science, M.I.T., Cambridge, MA, Tech. Mem. MIT/LCS/TM-291, 1985.

Google Scholar32.

A.V. Goldberg and R.E. Tarjan “A new approach to the maximum flow problem,” in *Proc. 18th ACM STOC*, 1986, pp. 136–146.

33.

A.V. Goldberg and R.E. Tarjan “Solving minimum cost flow problems by successive approximation”

*Math. of Oper. Res.*, vol. 15, 1990, pp. 430–466.

Google Scholar34.

R. Jonker and A. Volegnant, “A shortest augnmenting path algorithm for dense and sparse linear assignment problems,”

*Computing*, vol. 38, 1987, pp. 325–340.

Google Scholar35.

D. Kempa, J. Kennington, and H. Zaki, “Performance characteristics of the Jacobi and Gauss-Seidel versions of the auction algorithm on the alliant FX/8,” Dept. of Mech. and Ind. Eng., Univ. of Illinois, Champaign-Urbana, IL, Report OR-89–008, 1989.

Google Scholar36.

H.W. Kuhn, “The Hungarian method for the assignment problem,”

*Nav. Res. Log. Q.*, vol. 2, 1955, pp. 83–97.

Google Scholar37.

E. Lawler,

*Combinatorial Optimization: Networks and Matroids*, Holt, Reinhart, and Winston: New York, 1976.

Google Scholar38.

X. Li and S.A. Zenios, “Data parallel solutions of min-cost network flow problems using ∈-relaxations,” Dept. of Decision Sciences, The Wharton School, Univ. of Pennsylvania, Philadelphia, PA, Report, 1991–05–20, 1991.

Google Scholar39.

D.G. Luenberger,

*Linear and Nonlinear Programming*, Addison-Wesley: Reading, MA, 1984.

Google Scholar40.

E.V. Martins, “An algorithm for ranking paths that may contain cycles,”

*European J. of Oper. Res.*, vol. 18, 1984, pp. 123–130.

Google Scholar41.

G. Mazzoni, S. Pallotino, and M.G. Scutella', “The maximum flow problem: A max-preflow approach,” *European J. of Oper. Res.*, vol. 53, 1991.

42.

G.J. Minty, “A Comment on the ShortestRoute Problem,” *Opertions Research*, vol. 5, p. 724, 1957.

43.

S. Pallottino and M.G. Scutella', “Strongly polynomial algorithms for shortest paths”, Dipartimento di Informatica Report TR-19/91, University of Pisa, Italy, 1991.

Google Scholar44.

C.H. Papadimitriou and K. Steiglitz,

*Combinatorial Optimization: Algorithms and Complexity*. Prentice-Hall:Englewood Cliffs, NJ, 1982.

Google Scholar45.

C. Phillips and S.A. Zenios, “Experiences with large scale network optimization on the Connection Machine,” Dept. of Decision Sciences, The Wharton School, Univ. of Pennsylvania, Philadelphia, PA, Report 88–11–05, Nov. 1988.

Google Scholar46.

L. Polymenakos, “Analysis of parallel asynchronous schemes for the auction shortest path algorithm,” MS thesis, EECS Dept., M.I.T., Cambridge, MA., Jan. 1991.

47.

L. Polymenakos and D.P. Bertsekas, “Parallel shortest path auction algorithms,” Lab. for Information and Decision Systems, Unpublished Report, M.I.T., Cambridge, MA, April 1992.

Google Scholar48.

R.T. Rockafellar,

*Network Flows and Monotropic Programming*, Wiley-Interscience: New York, 1984.

Google Scholar49.

B.L. Schwartz, “A computational analysis of the auction algorithm,” unpublished manuscript.

50.

J. Wein and S.A. Zenios, “Massively parallel auction algorithms for the assignment problem,” *Proc. of 3rd Symposium on the Frontiers of Massively Parallel Computation*, MD., 1990.

51.

J. Wein and S.A. Zenios, “On the massively parallel solution of the assignment problem,”

*J. of Parallel and Distributed Computing*, vol. 13, 1991, pp. 228–236.

Google Scholar52.

H. Zaki, “A comparison of two algorithms for the assignment problem,” Dept. of Mechanical and Industrial Engineering, Univ. of Illinois, Urbana, IL., Report ORL 90–002, 1990.

Google Scholar