Original Articles


, Volume 7, Issue 2, pp 78-85

First online:

Growth and nutrition of birch seedlings in relation to potassium supply rate

  • Tom EricssonAffiliated withDepartment of Ecology and Environmental Research, Swedish University of Agricultural Sciences
  • , Monika KährAffiliated withDepartment of Ecology and Environmental Research, Swedish University of Agricultural Sciences

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Growth of hydroponically cultivated birch seedlings (Betula pendula Roth.) at sub- and supra-optimum potassium supply rates was investigated. Potassium was supplied either as a relative addition rate (r k = 5, 10, 15 and 20% increase day-1) or as fixed concentrations (0.2, 3, 6, 12 and 15 mM) in the culture solution. After an acclimation period the growth rate of the seedlings in the suboptimum treatments reached values close to the treatment variable, the relative rate of K-addition. Deficiency symptoms, in the form of chlorosis and necroses along the leaf margins, developed initially in all suboptimum treatments, but very few new symptoms appeared once the seedlings had reached the phase of steady-state nutrition and growth. At supra-optimum K-supply levels, i.e. at 0.2–15 mM K in the culture solution, no symptoms of deficiency or toxicity developed, and the relative growth rate of the seedlings remained maximum. The relative growth rate of the seedlings was linearly related to the plant K-status for K contents ranging from 0.2 to 1.0% of dry weight (DW). At higher internal K-concentrations, 1.0–3.0% DW, no further increase in relative growth rate was achieved. A shortage of K resulted in a decrease in the net assimilation rate. This effect was counterbalanced by the absence of shift in he leaf weight ratio as well as by the production of relatively thin leaves. The fraction of dry matter allocated to roots decreased in K-limited plants, as did the leaf contents of soluble carbohydrates and starch.

Key words

Betula pendula Dry matter distribution Leaf area ratio Leaf weight ratio Net assimilation rate