, Volume 243, Issue 1, pp 51-57

Sensory and autonomic innervation of non-hairy and hairy human skin

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Non-hairy and hairy human skin were investigated with the use of the indirect immunohistochemical technique employing antisera to different neuronal and non-neuronal structural proteins and neurotransmitter candidates. Fibers immunoreactive to antisera against neurofilaments, neuron-specific enolase, myelin basic protein, protein S-100, substance P, neurokinin A, neuropeptide Y, tyrosine hydroxylase and vasoactive intestinal polypeptide (VIP) were detected in the skin with specific distributional patterns. Neurofilament-, neuron-specific enolase-, myelin basic protein-, protein S-100-, substance P-, neurokinin A-and vasoactive intestinal polypeptide (VIP)-like immunoreactivities were found in or in association with sensory nerves; moreover, neuron-specific enolase-, myelin basic protein-, protein S-100, neuropeptide Y-, tyrosine hydroxylase- and vasoactive intestinal polypeptide (VIP)-like immunoreactivities occurred in or in association with autonomic nerves. It was concluded that antiserum against neurofilaments labels sensory nerve fibers exclusively, whereas neuron-specific enolase-, myelin basic protein- and protein S-100-like immunoreactivities are found in or in association with both sensory and autonomic nerves. Substance P- and neurokinin A-like immunoreactivities were observed only in sensory nerve fibers, and neuropeptide Y- and tyrosine hydroxylase-like immunoreactivities occurred only in autonomic nerve fibers, whereas vasoactive intestinal polypeptide (VIP)-like immunoreactivity was seen predominantly in autonomic nerves, but also in some sensory nerve fibers.