, Volume 22, Issue 6, pp 681-715

Initial ISEE magnetometer results: magnetopause observations

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The magnetic field profiles across the magnetopause obtained by the ISEE-1 and -2 spacecraft separated by only a few hundred kilometers are examined for four passes. During one of these passes the magnetosheath field was northward, during one it was slightly southward, and in two it was strongly southward. The velocity of the magnetopause is found to be highly irregular ranging from 4 to over 40 km s-1 and varying in less time than it takes for a spacecraft to cross the boundary. Thicknesses ranged from 500 to over 1000 km.

Clear evidence for reconnection is found in the data when the magnetosheath field is southward. However, this evidence is not in the form of classic rotational discontinuity signatures. Rather, it is in the form of flux transfer events, in which reconnection starts and stops in a matter of minutes or less, resulting in the ripping off of flux tubes from the magnetosphere. Evidence for flux transfer events can be found both in the magnetosheath and the outer magnetosphere due to their alteration of the boundary normal. In particular, their presence at the time of magnetopause crossings invalidates the usual 2-dimensional analysis of magnetopause structure. Not only are these flux transfer events probably the dominant means of reconnection on the magnetopause, but they may also serve as an important source of magnetopause oscillations, and hence of pulsations in the outer magnetosphere. On two days the flux transfer rate was estimated to be of the order of 2 × 1012 Maxwells per second by the flux transfer events detected at ISEE. Events not detectable at ISEE and continued reconnection after passage of an FTE past ISEE could have resulted in an even greater reconnection rate at these times.