, Volume 12, Issue 1, pp 21-35

A new snow parameterization for the Météo-France climate model

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Both observational studies and numerical experiments demonstrate the sensitivity of the atmosphere to variations in the extent and mass of snow cover. There is therefore a need for simple but realistic snow parameterizations in forecast and climate models. This study describes a new physically-based snow hydrology for use in the Météo-France climate model, together with the ISBA land-surface scheme. A restricted number of parameters has been added, while preserving a single surface energy budget. The ageing process of the snow pack has been introduced through prognostic equations for snow density and snow albedo. Snowmelt computation has been modified over partially snow-covered and vegetated areas. The new scheme has been validated against field measurements in stand-alone simulations forced by observed meteorological conditions. The results show a strong improvement in the model's performance, thereby suggesting that a simple one-layer snow model is able to reproduce the main physical mechanisms governing the snow pack evolution. Part II of the present study will concern the validation in a 3-D experiment within the Météo-France climate model.