, Volume 5, Issue 5, pp 301-311

Extramatrical structures of hydrophobic and hydrophilic ectomycorrhizal fungi

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The extramatrical mycelia of Suillus bovinus, Rhizopogon luteolus and R. vinicolor, all examples of hydrophobic (ho), mat-forming mycorrhizal fungi, were examined while associated with their hosts in the unsterilized rhizoscope, and efforts were made to produce and examine similar structures in vitro. Comparisons were made with four hydrophilic (hi) mycorrhizal fungi, Thelephora terrestris, Cenococcum geophilum, Laccaria laccata and Hebeloma crustuliniforme. The ho fungi formed linear structures (coarse, rhizomorph-like cords, with vessels in the center) and fans, both in the rhizoscope and in vitro. The same was seen in mycorrhizal mycelia in forest soils. These cords did not themselves give rise to the fans peripherally, and were not proper rhizomorphs, but were created continuously from single exploring air hyphae in the preexisting fan. Thus the ho exploring hyphae aggregated into strands, which grew in thickness only when no suitable, exploitable substrate was found. The assembly of hyphae creating ho cords was seen in the air as well as on inert hydrophilic (glass) or hydrophobic (plastic) surfaces, but never in water. It is hypothesized that the ho cell wall surface glues hyphae together while cords are formed. Water disturbed strands and mantles already formed. The ho exploring hyphae could also create ho mycelial patches (as in a mat) at the water-air interface of a number of substrates. The periphery of these patches seemed to be composed of shorter exploiting hyphae penetrating different water-soaked substrates. Exploring, aerial hyphal tips of the ho fungi were shown to “excrete” water droplets from openings in the ho cell wall surface, both in vitro and in the rhizoscope. In the rhizoscope, droplet excretion was apparently directly governed by photosynthesis in the shoot of the seedling. It is proposed that the drop exudation represents a kidney-like function of the extramatrical hyphae and a bridge to drier soil particles to initiate nutrient uptake by the hyphae. The ecological function of the different extramatrical structures of ho fungi are discussed. The ho cords or hyphae may translocate water only in the vessels or symplastically and not in the cell walls. The ho property may be essential among the S-selected (stress-tolerant) factors in these forest fungi. The transfer from water-repelling exploring structures into more hi exploiting structures in water contact with surrounding soil debris is, therefore, of great importance. The hi fungi did not form rhizomorph-like strands, in most cases, but an extending hyphal mycelium, representing foraging, exploring and exploiting structures at the same time. In the field, short strands may be found. On the hi fungi droplets were also produced but readily fused into a water sheath around the hypha. The hyphae thus tended to wick water via the cell wall.