, Volume 94, Issue 6, pp 640-652

Genetic heterogeneity of severe von Willebrand disease type III in the German population

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


The genetic heterogeneity of severe von Willebrand disease (vWd) type III was estimated by analysing extended haplotypes of eleven intragenic restriction fragment length polymorphisms and one variable number of tandem repeat polymorphism in 32 patients from 28 families from Germany or of German origin. All patients were screened for gross deletions and for mutations at potential “hot spot” regions of the von Willebrand factor (vWf) gene. Disease-associated haplotypes were established in 24 families. Only a few, apparently unrelated families shared common haplotypes suggesting a considerable genetic heterogeneity in the German population of vWd type III patients. Defects causing vWd type III were identified on 14 out of 56 chromosomes (25%). Gross deletions were detected in two families. A complete homozygous deletion of the vWf gene was displayed in one patient. Another patient was compound heterozygous for a large deletion of at least 100 kb of the vWf gene with an additional, as yet unidentified, defect. One homozygous missense mutation was detected in exon 10, and two non-sense mutations were detected in exon 8 and exon 45 of the vWf gene, respectively. A frameshift mutation (ΔC) in exon 18 was identified in five families and an additional frameshift mutation (ΔG) was found in exon 28 in one family. It appears that ΔC is the most common molecular defect in German patients with vWd type III. Its association with a number of different haplotypes suggests repeated de novo mutations at a mutation “hot spot”. Evidence is presented that particular molecular defects causing vWd type III are associated with different patterns of inheritance, depending on their location within the vWf gene. Complete deletions of the gene and nonsense mutations in the pro-sequence are correlated with recessive inheritance, whereas frameshift and nonsense mutations in the gene sequence corresponding to the mature vWf subunit tend to be inherited in a dominant fashion.