, Volume 191, Issue 3, pp 293-301

Regulation of blue-light-induced proton pumping by Vicia faba L. guard-cell protoplasts: Energetic contributions by chloroplastic and mitochondrial activities

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


An initial response during signal transduction in guard cells, following absorption of blue light, is the extrusion of protons. Translocation of protons across the guard-cell plasmalemma is an energy-requiring activity. The present study has investigated the energetic contribution from guard-cell chloroplasts and mitochondria to blue-light-induced proton pumping by Vicia faba guard-cell protoplasts. The addition of 3(3,4-dichlorophenyl)-1,1-dimethylurea to the protoplast suspension had a minimal effect on rates of acidification when oxygen concentrations of the medium were maintained close to near-saturating levels. Under the same conditions, oligomycin reduced both the rates of blue-light-induced acidification and total proton efflux. Lowering the oxygen concentration of the suspending medium to approximately 20 μM resulted in complete inhibition of blue-light-induced acidification activity. Swelling of protoplasts induced by blue light was also inhibited by low oxygen levels. Levels of ATP from whole-protoplast extracts were reduced by about 64% when exposed to low levels of oxygen. Increasing oxygen levels to near-saturating levels restored both blue-light-induced acidification rates and swelling of the protoplasts within a 60-min recovery period. Levels of ATP also increased during the recovery period. Addition of 3(3,4-dichlorophenyl)-1,1-dimethylurea or oligomycin to the suspending medium prior to increasing the oxygen concentration caused a reduction in acidification rates after the recovery period by 40 and 80%, respectively. Levels of ATP in guard-cell protoplasts were also reduced by both inhibitors after a 60-min recovery period. The results demonstrate that both guard-cell chloroplasts and mitochondria contribute energetically to blue-light-induced proton pumping by guard-cell protoplasts. Furthermore, both energy sources are inhibited by low oxygen concentrations, suggesting coordinated metabolic regulation between photo- and oxidative phosphorylation in guard cells.

This research was supported by an operating grant from the Natural Sciences and Engineering Research Council of Canada and a University Research Grant from The University of Calgary. Dr. L. Gedamu (University of Calgary) is thanked for providing access to the bioluminometer. Technical assistance by C. Chmielewski, C. Turnnir, S. Ham and K. Meyer is gratefully acknowledged.