, Volume 56, Issue 1-2, pp 1-8

Chemistry, accretion, and evolution of Mars

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The high FeO concentrations measured by VIKING for the Martian soils correspond to all probability to a FeO-rich mantle. In general, the VIKING XRF-data indicate a mafic crust with a considerably smaller degree of fractionation compared to the terrestrial crust.

In recent years evidence has been collected which points towards Mars being the parent body of SNC-meteorites and, hence, these meteorites have become a valuable source of information about the chemistry of Mars. Using element correlations observed in SNC-meteorites and general cosmochemical constraints, it is possible to estimated the bulk composition of Mars. Normalized to Si and Cl, the mean abundance value for the elements Ga, Fe, Na, P, K, F, and Rb in the Martian mantle is found to be 0.35 and thus exceeds the terrestrial value by about a factor of two. Aside pressure effects and the H2O poverty, the high P and K content of the Martian mantle may lead to magmatic processes different from those on Earth.

The composition of the Earth's mantle can successfully be described by a two component model. Component A: highly reduced and almost free of all elements more volatile than Na; component B: oxidized and containing all elements in Cl-abundances including volatile elements. The same two components can be used as building blocks for Mars, if one assumes that, contrary to the inhomogeneous accretion of the Earth, Mars accreted almost homogeneously. The striking depletion of all elements with chalcophile character indicates that chemical equilibrium between component A and B was achieved on Mars which lead to the formation of significant amounts of FeS which, on segregation, extracted the elements according to their sulphide-silicate partition coefficients. While for the Earth a mixing ratio A∶B = 85∶15 was derived, the Mars ratio of 60∶40 reflects the higher concentrations of moderately volatile elements like Na, K, and sulphur on Mars. A homogeneous accretion of Mars could also explain the obvious low abundances of water and primordial rare gases.