, Volume 32, Issue 1, pp 17-29

Memory dynamics and foraging strategies of honeybees

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


The foraging behavior of a single bee in a patch of four electronic flower dummies (feeders) was studied with the aim of analyzing the informational components in the choice process. In different experimental combinations of reward rates, color marks, odors and distances of the feeders, the behavior of the test bee was monitored by a computer in real time by several devices installed in each feeder. The test bee optimizes by partially matching its choice behavior to the reward rates of the feeders. The matching behavior differs strongly between “stay” flights (the bee chooses the feeder just visited) and “shift” flights (the bee chooses one of the three alternative feeders). The probability of stay and shift flights depends on the reward sequence and on the time interval between successive visits. Since functions describing the rising probability of stay flights with rising amounts of sucrose solution just experienced differ for the four feeders, it is concluded that bees develop feeder-specific memories. The choice profiles of shift flights between the three alternative feeders depend on the mean reward rate of the feeder last visited. Good matching is found after visits to the low-reward feeders and poor matching following departure from the high-reward feeders. These results indicate that bees use two different kinds of memories to guide their choice behavior: a transient short-term working memory that is not feeder-specific, and a feeder-specific long-term reference memory. Model calculations were carried out to test this hypothesis. The model was based on a learning rule (the difference rule) developed by Rescorla and Wagner (1972), which was extended to the two forms of memories to predict this operant behavior. The experiments show that a foraging honeybee learns the properties of a food source (its signals and rewards) so effectively that specific expectations guide the choice behavior.

Correspondence to: R. Menzel