, Volume 27, Issue 2, pp 103-111

On the integration of individual foraging strategies with colony ergonomics in social insects: nectar-collection in honeybees

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


We experimentally tested whether foraging strategies of nectar-collecting workers of the honeybee (Apis mellifera) vary with colony state. In particular, we tested the prediction that bees from small, fast growing colonies should adopt higher workloads than those from large, mature colonies. Queenright “small” colonies were set up by assembling 10 000 worker bees with approximately 4100 brood cells. Queenright “large” colonies contained 35 000 bees and some 14 500 brood cells. Thus, treatments differed in colony size but not in worker/brood ratios. Differences in workload were tested in the context of single foraging cycles. Individuals could forage on a patch of artificial flowers offering given quantities and qualities of nectar rewards. Workers of small colonies took significantly less nectar in an average foraging excursion (small: 40.1 ± 1.1 SE flowers; large: 44.8 ± 1.1), but spent significantly more time handling a flower (small: 7.3 ± 0.4 s ; large: 5.8 ± 0.4 s). When the energy budgets for an average foraging trip were calculated, individuals from all colonies showed a behavior close to maximization of net energetic efficiency (i.e., the ratio of net energetic gains to energetic costs). However, bees from small colonies, while incurring only marginally smaller costs, gained less net energy per foraging trip than those from large colonies, primarily as a result of prolonged handling times. The differences between treatments were largest during the initial phases of the experimental period when also colony development was maximally different. Our results are at variance with simple models that assume natural selection to have shaped behavior in a single foraging trip only so as to maximize colony growth.

Offprint requests to: P. Schmid-Hempel