, Volume 24, Issue 3, pp 313-329

Chemoautotrophic, sulfur-oxidizing symbiotic bacteria on marine nematodes: Morphological and biochemical characterization

Purchase on Springer.com

$39.95 / €34.95 / £29.95*

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The marine, free-living Stilbonematinae (Nematoda: Desmodorida) inhabit the oxygen sulfide chemocline in marine sands. They are characterized by an association with ectosymbiotic bacteria. According to their ultrastructure the bacteria are Gram-negative and form morphologically uniform coats that cover the entire body surface of the worms. They are arranged in host-genus or host-species specific patterns: cocci form multilayered sheaths, rods, and crescent- or filament-shaped bacteria form monolayers. The detection of enzymes associated with sulfur metabolism and of ribulose-1,5 bisphosphate carboxylase oxygenase, as well as elemental sulfur in the bacteria indicate a chemolithoautotrophic nature of the symbionts. Their reproductive patterns appear to optimize space utilization on the host surface: vertically standing rods divide by longitudinal fission, whereas other bacteria form non-septate filaments of up to 100 μm length.