Behavioral Ecology and Sociobiology

, Volume 35, Issue 1, pp 1-11

First online:

Biological markets: supply and demand determine the effect of partner choice in cooperation, mutualism and mating

  • Ronald NoëAffiliated withAbteilung Wickler, Seewiesen, Max-Planck-Institut für Verhaltensphysiologie
  • , Peter HammersteinAffiliated withAbteilung Wickler, Seewiesen, Max-Planck-Institut für Verhaltensphysiologie

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


The formation of collaborating pairs by individuals belonging to two different classes occurs in the contexts of reproduction and intea-specific cooperation as well as of inter-specific mutualism. There is potential for partner choice and for competition for access to preferred partners in all three contexts. These selective forces have long been recognised as important in sexual selection, but their impact is not yet appreciated in cooperative and mutualistic systems. The formation of partnerships between members of different classes has much in common with the conclusion of trade agreements in human markets with two classes of traders, like producers and consumers, or employers and employees. Similar game-theoretical models can be used to predict the behaviour of rational traders in human markets and the evolutionarily stable strategies used in biological markets. We present a formal model in which the influence of the market mechanism on selection is made explicit. We restrict ourselves to biological markets in which: (1) Individuals do not compete over access to partners in an agonistic manner, but rather by outcompeting each other in those aspects that are preferred by the choosing party. (2) The commodity the partner has to offer cannot be obtained by the use of force, but requires the consent of the partner. These two restrictions ensure a dominant role for partner choice in the formation of partnerships. In a biological market model the decision to cooperate is based on the comparison between the offers of several potential partners, rather than on the behaviour of a single potential partner, as is implicitly assumed in currently accepted models of cooperation. In our example the members of one class A offer a commodity of fixed value in exchange for a commodity of variable value supplied by the other class, B. We show that when the B-class outnumbers the A-class sufficiently and the cost for the A-class to sample the offers of the B-class are low, the choosiness of the A-class will lead to selection for the supply of high value commodities by the B-class (Fig. 3a). Under the same market conditions, but with a high sampling cost this may still be the evolutionariy stable outcome, but another pair of strategies proves to be stable too: relaxed choosiness of class A coupled with low value commodities supplied by class B (Fig. 3b). We give a number of examples of mating, cooperative and mutualistic markets that resemble the low sampling cost situation depicted in Fig. 3a.

Key words

Market genes ESS Cooperation Mutualism Sexual selection