Skip to main content
Log in

Amphibious fish: why do they leave water?

  • Published:
Reviews in Fish Biology and Fisheries Aims and scope Submit manuscript

Summary

Amphibious behaviour in fish has evolved separately many times since the first amphibious fishes, the rhipidistian crossopterygians, ventured onto land about 350 million years ago. This behaviour has resulted in the colonization and eventual domination by vertebrates of the terrestrial habitat. It is generally proposed that aquatic hypoxia, owing to metabolic oxygen consumption and organic decay, was the most important selective force in the evolution of air-breathing vertebrates (e.g. Randall et al., 1981). Modern amphibious fish species give an insight into the reasons for leaving and eventually abandoning the aquatic habitat. Amphibious fishes today leave the water for a variety of reasons associated with degradation of their aquatic habitat, or biotic factors within it.

The possible causal factors which may elicit an emergence response are summarized in Fig. 1(a) and (b). Amphibious fish inhabiting closed systems, as typified by freshwater or intertidal pools, may leave water for any of the reasons detailed in Fig. 1(a). The relative importance of any one stimulus is likely to vary between different species. However, it is possible that in closed systems, adverse fluctuations in physico-chemical parameters will have a more important effect in eliciting amphibious behaviour than will biotic factors. In open systems, such as coastal waters or large freshwater bodies, effectively two routes of escape from adverse aquatic conditions are available to amphibious fish. They may move onto land, or alternatively they may move underwater to find better conditions. In such a system, where physico-chemical parameters remain relatively constant, abiotic factors are unlikely to have a significant influence on amphibious behaviour. The dominant stimulus in open systems is possibly the three-way interaction between predation, competition, and short-or long-term food availability (Fig. 1(b)).

It is unlikely that any one of the factors discussed in this review will act alone in causing amphibious behaviour, and in this respect the available literature on fish leaving water is lacking. Much of it is fragmentary and partly anecdotal, and the limited amount of experimental work tends to concentrate on individual causal factors. There is evidently scope for detailed examination of emersion in a number of amphibious fishes, testing a matrix of environmental and biotic stimuli, in an attempt to determine in more detail the reasons for such behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abel D.C., Koenig C.C. and Davies W.P. (1987) Emersion in the mangrove forest fish, Rivulus marmoratus: a unique response to hydrogen sulfide. Env. Biol. Fishes 18, 67–72.

    Google Scholar 

  • Barton M. (1985) Response of two species of amphibious stichaeoid fishes to temperature fluctuations in an intertidal habitat. Hydrobiologia 120, 151–7.

    Google Scholar 

  • Berg T. and Steen J.B. (1965) Physiological mechanisms for aerial respiration in the eel. Comp. Biochem. Physiol. 15, 469–84.

    Google Scholar 

  • Bridges C.R. (1988) Respiratory adaptations in intertidal fish. Am. Zool. 28, 79–96.

    Google Scholar 

  • Bridges C.R., Taylor A.C., Morris S.J. and Grieshaber M.K. (1984) Ecophysiological adaptations in Blennius pholis (L.) blood to intertidal rockpool environments. J. exp. mar. Biol. Ecol. 77, 151–67.

    Google Scholar 

  • Brillet C. (1976) Structure du terrier, reproduction et comportement des jeunes chez le poisson amphibie, Periophthalmus sobrinus Eggert. Rev. Ecol. (Terre Vie) 30, 465–83.

    Google Scholar 

  • Brillet C. (1986) Notes sur le comportement du poisson amphibie, Lophalticus kirkii Gunther (Pisces-Salariidae), comparison avec Periophthalmus sobrinus Eggert. Rev. Ecol. (Terre Vie) 41, 361–76.

    Google Scholar 

  • Clayton D.A. (1985) Ecology of mudflats with particular reference to those of the Northern Arabian Gulf. In Halwagy R., Clayton D.A. and Behbehani M., eds. Proc. First Arabian Gulf Conf. Environment and Pollution. Kuwait: Kuwait University, Kuwait Foundation for the Advancement of Science and Environmental Protection Council, pp. 83–96.

    Google Scholar 

  • Daniel, M.J. (1971) Aspects of the physiology of the intertidal teleost Blennius pholis (L.). PhD thesis, Univ. London. 212 pp.

  • Das B.K. (1934) The habits and structure of Pseudapocryptes lanceolatus, a fish in the first stages of structural adaptation to aerial respiration. Proc. R. Soc. 115B, 422–30.

    Google Scholar 

  • Davenport J. and Woolmington A.D. (1981) Behavioural responses of some rocky shore fish exposed to adverse environmental conditions. Mar. Behav. Physiol. 8, 1–12.

    Google Scholar 

  • Daxboeck C. and Heming T.A. (1982) Bimodal respiration in the intertidal fish, Xiphister atropurpureus (Kittlitz). Mar. Behav. Physiol. 9, 23–33.

    Google Scholar 

  • Dehadrai P.V. (1962) Observations on certain physiological reactions in Ophicephalus striatus exposed to air. Life Sci. 11, 653–7.

    Google Scholar 

  • Ebeling A.W., Bernai P. and Zuleta A. (1970) Emersion of the amphibious Chilean clingfish, Sicyases sanguineus. Biol. Bull. Mar. Biol. Labl., Woods Hole 139, 115–37.

    Google Scholar 

  • Eddy F.B., Bamford O.S. and Maloiy G.M.O. (1980) Sodium and chloride balance in the African catfish, Clarias mossambicus. Comp. Biochem. Physiol. 66A, 637–41.

    Google Scholar 

  • Eldon, G.A. (1978) The life history of Neochanna apoda (Pisces: Galaxiidae). Fish. Res. Bull., N.Z. 19, 44 pp.

    Google Scholar 

  • Fenwick J.C. and Lam T.J. (1988) Calcium fluxes in the teleost fish tilapia (Oreochromis) in water and in both water and air in the marble goby (Oxyeleotris) and the mudskipper (Periophthalmodon). Physiol. Zool. 61, 119–25.

    Google Scholar 

  • Garey W.F. (1962) Cardiac responses of fishes in asphyxic environments. Biol. Bull. mar. biol. Lab., Woods Hole 122, 362–8.

    Google Scholar 

  • Goodyear C.P. (1970) Terrestrial and aquatic orientation in the starhead topminnow Fundulus notii. Science 68, 603–5.

    Google Scholar 

  • Gordon M.S., Boeitus I., Evans D.H. and Oglesby L.C. (1968) Additional observations on the natural history of the mudskipper, Periophthalmus sobrinus. Copeia 1968, 853–7.

    Google Scholar 

  • Gordon M.S., Boetius I., Evans D.H., McCarthy R. and Oglesby L.C. (1969) Aspects of the physiology of terrestrial life in amphibious fishes. I. The mudskipper, Periophthalmus sobrinus. J. exp. Biol. 50, 141–9.

    Google Scholar 

  • Gordon M.S., Fischer S. and Tarifeno S. (1970) Aspects of the physiology of terrestrial life in amphibious fishes. II. The Chilean clingfish, Sicyases sanguineus, J. exp. Biol. 53, 559–72.

    Google Scholar 

  • Gordon M.S., Ng W.W.-s and Yip A.Y-w. (1978) Aspects of the physiology of terrestrial life in amphibious fishes. III. The Chinese mudskipper, Periophthalmus cantonensis. J. exp. Biol. 72, 57–75.

    Google Scholar 

  • Gordon, M.S., Chin, H.G. and Martin, K.L. (1985a) Aspects of the ecophysiology of terrestriality in Alticus kirki, the rockskipper blenny of the Red Sea. Am. Zool. 25, 123A.

    Google Scholar 

  • Gordon M.S., Gabaldon D.J. and Yip A.Y-w. (1985b) Exploratory observations on microhabitat selection within the intertidal zone by the Chinese mudskipper fish Periophthalmus cantonensis. Mar. Biol. 85, 209–15.

    Google Scholar 

  • Graham J.B. (1970) Preliminary studies on the biology of the amphibious clinid Mnierpes macrocephalus. Mar. Biol. 5, 136–40.

    Google Scholar 

  • Graham J.B. (1973) Terrestrial life of the amphibious fish Mnierpes macrocephalus. Mar. Biol. 23, 83–91.

    Google Scholar 

  • Graham J.B. and Baird T.A. (1984) The transition to air-breathing in fishes. III. Effects of body size and aquatic hypoxia on the aerial gas exchange of the swamp eel Synbranchus marmoratus. J. exp. Biol. 108, 357–75.

    Google Scholar 

  • Graham J.B., Jones C.B. and Rubinoff I. (1985) Behavioural, physiological and ecological aspects of the amphibious life of the pearl blenny, Entomacrodus nigracans Gill. J. exp. mar. Biol. Ecol. 89, 255–68.

    Google Scholar 

  • Gregory R.B. (1977) Synthesis and total excretion of waste nitrogen by fish of the Periophthalmus (mudskipper) and Scartelaos families. Comp. Biochem. Physiol. 57A, 33–6.

    Google Scholar 

  • Grizzle J.M. and Thiyagarajah A. (1987) Skin histology of Rivulus ocellatus marmoratus: apparent adaptation for aerial respiration. Copeia 1987, 237–40.

    Google Scholar 

  • Hakim A., Munshi J.S.D. and Hughes G.M. (1978) Morphometrics of the respiratory organs of the Indian green snake-headed fish, Channa punctata. J. Zool., Lond. 184, 519–43.

    Google Scholar 

  • Heisler N. (1984) Acid-base regulation in fishes. In Hoar W.S. and Randall D.J., eds. Fish Physiology, Vol. XA. London: Academic Press, pp. 315–401.

    Google Scholar 

  • Horn M.H. and Riegle K.C. (1981) Evaporative water loss and intertidal vertical distribution in relation to body size and morphology of stichaeoid fishes from California. J. exp. mar. Biol. Ecol. 50, 273–88.

    Google Scholar 

  • Huehner M.K., Schramm M.E. and Hens M.D. (1985) Notes on the behavior and ecology of the killifish, Rivulus marmoratus Poey 1880 (Cyprinodontidae). Florida Scientist. 48, 1–7.

    Google Scholar 

  • Hughes G.M. and Munshi J.S.D. (1986) Scanning electron microscopy of the accessory respiratory organs of the snake-headed fish, Channa striata (Bloch). J. Zool., Lond. 209, 305–17.

    Google Scholar 

  • Hughes G.M., Munshi J.S.D. and Ojha J. (1986) Post-embryonic development of water-and air-breathing organs of Anabas testudineus (Bloch). J. Fish Biol. 29, 443–50.

    Google Scholar 

  • Hyde D.A., Moon T.W. and Perry S.F. (1987) Physiological consequences of prolonged aerial exposure in the American eel: blood respiratory and acid-base status. J. comp. Physiol. 157B, 635–42.

    Google Scholar 

  • Iwata K. (1988) Nitrogen metabolism in the mudskipper, Periophthalmus cantonensis: changes in free amino acids and related compounds in various tissues under conditions of ammonia loading, with special reference to its high ammonia tolerance. Comp. Biochem. Physiol. 91A 499–508.

    Google Scholar 

  • Iwata K. and Kakuta I. (1983) A comparison of catalytic properties of glutamate dehydrogenase from liver and muscle between amphibious Periophthalmus cantonensis and water-breathing gobid fishes Tridentiger obscurus obscurus. Bull. Jap. Soc. Scient. Fish. 49, 1903–8.

    Google Scholar 

  • Jeffers, G.W. (1931) The life history of the capelin (Mallotus villosus) (O.F. Müller). PhD thesis, Univ. Toronto.

  • Johansen K. (1970) Air breathing in fishes. In Hoar W.S. and Randell D.J., eds. Fish Physiology, Vol. IV New York, London: Academic Press, pp. 361–411.

    Google Scholar 

  • Jordan J. (1976) The influence of body weight on gas exchange in the air-breathing fish, Clarias batrachus. Comp. Biochem. Physiol. 53A, 305–10.

    Google Scholar 

  • Kormanik G.A. and Evans D.H. (1988) Nitrogenous waste excretion in the intertidal rock gunnel (Pholis gunnellus L.): the effects of emersion. Bull. Mt Desert Isl. Biol. 27, 33–5.

    Google Scholar 

  • Kramer D.L. (1978) Terrestrial group spawning of Brycon petrosus (Pisces: Characidae) in Panama. Copeia 1978, 536–7.

    Google Scholar 

  • Kramer D.L., Lindsey C.C., Moodie G.E.E. and Stevens E.D. (1978) The fishes and the aquatic environment of the central Amazon basin, with particular reference to respiratory patterns. Can. J. Zool. 56, 717–29.

    Google Scholar 

  • Krekorian C.O. and Dunham D.W. (1972) Preliminary observations on the reproductive and parental behaviour of the spraying characid Copeina arnoldi Regan. Z. Tierpsychol. 31, 419–33.

    Google Scholar 

  • Laming P.R., Funston C.W., Roberts D. and Armstrong M.J. (1982) Behavioural, physiological and morphological adaptations of the shanny (Blennius pholis) to the intertidal habitat. J. mar. biol. Ass. U.K. 62, 329–38.

    Google Scholar 

  • Larson H.K. (1983) Notes on the biology of the goby Kelloggella cardinalis (Jordan and Seale). Micronesica, 19, 157–64.

    Google Scholar 

  • Lee C.G.L., Low W.P. and Ip Y.K. (1987) Na+, K+ and volume regulation in the mudskipper Periophthalmus chrysospilos. Comp. Biochem. Physiol. 87A, 439–48.

    Google Scholar 

  • Liem K.F. (1987) Functional design of the air ventilation apparatus and overland escursions by teleosts. Fieldiana, Zool. 37, 1–29.

    Google Scholar 

  • Louisy P. (1987) Observations sur l'emersion nocturne de deux blennies mediterranéennes: Coryphoblennius galerita et Blennius trigloides (Pisces, Perciformes). Cybium 11, 55–73.

    Google Scholar 

  • Low W.P., Lane D.J.W. and Ip Y.P. (1988) A comparative study of terrestrial adaptations of the gills in three mudskippers—Periophthalmus chrysospilos, Boleophthalmus boddaerti, and Periophthalmodon schlosseri. Biol. Bull. mar. biol. Lab., Woods Hole. 175, 434–8.

    Google Scholar 

  • Macnae W. (1968) A general account of the fauna and flora of mangrove swamps and forests in the Indo-west Pacific region. Adv. Mar. Biol. 6, 73–270.

    Google Scholar 

  • Marliave J.B. (1981) High intertidal spawning under rockweed, Fuscus distichus, by the sharpnosed sculpin, Clinocottus acuticeps. Can. J. Zool. 59, 1122–5.

    Google Scholar 

  • Martin K.L.M. and Lighton J.R.B. (1989) Aerial CO2 and O2 exchange during terrestrial activity in an amphibious fish, Alticus kirki (Blenniidae). Copeia 1989, 723–7.

    Google Scholar 

  • Munshi J.S.D. and Singh B.N. (1968) On the respiratory organs of Amphipnous cuchia (Ham.). J. Morph. 124, 423–44.

    Google Scholar 

  • Munshi J.S.D., Olson K.R., Ojha J. and Ghosh T.K. (1986) Morphology and vascular anatomy of the accessory respiratory organs of the air-breathing climbing perch, Anabas testudineus (Bloch). Am. J. Anat. 176, 321–31.

    Google Scholar 

  • Munshi J.S.D., Hughes G.M., Gehr P. and Weibel E.R. (1989) Structure of the air-breathing organs of a swamp mud eel, Monopterus cuchia. Jap. J. Ichthyol. 35, 453–65.

    Google Scholar 

  • Murdy E.O. (1989) A taxonomic revision and cladistic analysis of the oxudercine gobies (Gobiidae: Oxudercinae). Rec. Aust. Mus., Supp. 11, 1–93.

    Google Scholar 

  • Paine R.T. and Palmer A.R. (1978) Sicyases sanguineus: a unique trophic generalist from the Chilean interidal zone. Copeia 1978, 75–81.

    Google Scholar 

  • Pettit M.J. and Beitinger T.L. (1985) Oxygen acquisition of the reedfish, Erpetoichthys calabaricus. J. exp. Biol. 114, 289–306.

    Google Scholar 

  • Ramaswamy M. and Reddy T.G. (1978) Bimodal oxygen uptake of an air-breathing fish Channa gachua (Hamilton). Indian J. exp. Biol. 16, 693–5.

    Google Scholar 

  • Ramaswamy M. and Reddy T.G. (1983) Ammonia and urea excretion in three species of air breathing fish subjected to aerial exposure. Proc. Indian Acad, Sci. (Anim. Sci.) 92, 293–7.

    Google Scholar 

  • Randall D.J., Burggren W.W., Farrell A.P. and Haswell M.S. (1981) The Evolution of Air Breathing in Vertebrates. Cambridge: Cambridge University Press. 133 pp.

    Google Scholar 

  • Rao H.S. and Hora L.S. (1938) On the ecology, bionomics and systematics of the blenniid fishes of the genus Andamia Blyth. Rec. Indian Mus. 40, 377–401.

    Google Scholar 

  • Reddy T.G. and Natarajan G.M. (1971) On the function of labyrinthine organ of Anabas scandens (Cuv.), J. Annamalai Univ., Sci. 29, 149–57.

    Google Scholar 

  • Sacca R. and Burggren W.W. (1982) Oxygen uptake in air and water in the air-breathing reedfish Calamoichthys calabaricus: role of skin, gills and lungs. J. Exp. Biol. 97, 179–86.

    Google Scholar 

  • Sarker A.L., Al-Daham N.K. and Bhatti M.N. (1980) Food habits of the mudskipper Pseudapocryptes dentatus (Val.). J. Fish Biol. 17, 635–9.

    Google Scholar 

  • Seghers B.H. (1978) Feeding behavior and terrestrial locomotion in the cyprinodontid fish, Rivulus hartii (Boulenger). Verh. Internat. Verein. Limnol. 20, 2055–9.

    Google Scholar 

  • Singh B.R., Yadav A.N., Ojha J. and Munshi J.S.D. (1981) Gross structure and dimensions of the gills of an intestinal air-breathing fish (Lepidocephalichthys guntea). Copeia 1981, 224–9.

    Google Scholar 

  • Singh B.R., Mishra A.P. and Singh R.P. (1982) Development of the air breathing organ in the snake-headed fish, Channa punctatus. Zool. Anz. 208, 428–39.

    Google Scholar 

  • Southward A.J. (1958) Note on the temperature tolerance of some intertidal animals in relation to environmental temperatures and geographical distribution. J. mar. biol. Ass. U.K. 37, 49–66.

    Google Scholar 

  • Sponder D.L. and Lauder G.V. (1981) Terrestrial feeding in the mudskipper Periophthalmus (Pisces: Teleostei): a cineradiographic analysis. J. Zool., Lond. 193, 517–30.

    Google Scholar 

  • Stebbins R.C. and Kalk M. (1961) Observations on the natural history of the mudskipper, Periophthalmus sobrinus. Copeia 1961, 18–27.

    Google Scholar 

  • Stevens J.K. and Parsons K.E. (1980) A fish with double vision. Nat. Hist., N.Y. 89, 62–7.

    Google Scholar 

  • Szelistowski W.A. (1990) A new clingfish (Teleostei: Gobiesocidae) from the mangroves of Costa Rica, with notes on its ecology and early development. Copeia 1990, 500–507.

    Google Scholar 

  • Tamura S.O., Morii H. and Yuzuriha M. (1976) Respiration of the amphibious fishes Periophthalmus cantonensis and Boleophthalmus chinensis in water and on land. J. exp. Biol. 65, 97–107.

    Google Scholar 

  • Thomsen D.A., Findley L.T. and Kerstitch A.N. (1979) Reef Fishes of the Sea of Cortes. New York: Wiley. 302 pp.

    Google Scholar 

  • Todd E.S. (1976) Terrestrial grazing by the eastern tropical Pacific goby, Gobionellus sagittula. Copeia 1976, 374–7.

    Google Scholar 

  • Tytler P. and Vaughan T. (1983) Thermal ecology of the mudskippers, Periophthalmus koelreuteri (Pallas) and Boleophthalmus boddarti (Pallas) of Kuwait Bay. J. Fish Biol. 23, 327–37.

    Google Scholar 

  • Walker B.W. (1952) A guide to the grunion. Calif, Fish Game 38, 409–20.

    Google Scholar 

  • Wheeler A. (1969) The Fishes of The British Isles and N. W. Europe. London: Macmillan. 613 pp.

    Google Scholar 

  • Wright W.G. and Raymond J.A. (1978) Air-breathing in a California sculpin. J. exp. Zool. 203, 171–6.

    Google Scholar 

  • Yadav A.N. and Singh B.R. (1989) Gross structure and dimensions of the gill in an air-breathing goby, Pseudapocryptes lanceolatus. Jap. J. Ichthyol. 36, 252–9.

    Google Scholar 

  • Zander C.D. (1972) Beziehungen zwischen korperbau und Lebensweise bei Blennidae (Pisces) aus dem Roten Meer. I. Außere morphologie. Mar. Biol. 13, 238–46.

    Google Scholar 

  • Zander C.D. (1974) Beziehungen zwischen korperbau und Lebensweise bei Blennidae (Pisces) aus dem Roten Meer. III. Morphologie des Auges. Mar. Biol. 28, 61–71.

    Google Scholar 

  • Zander C.D. (1983) Terrestrial sojourns of two Mediterranean blennoid fish (Pisces, Blennioidei, Blenniidae). Senckenbergiana marit. 15, 19–26.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sayer, M.D.J., Davenport, J. Amphibious fish: why do they leave water?. Rev Fish Biol Fisheries 1, 159–181 (1991). https://doi.org/10.1007/BF00157583

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00157583

Keywords

Navigation