Climatic Change

, Volume 16, Issue 3, pp 247-281

First online:

Role of methane clathrates in past and future climates

  • Gordon J. MacDonaldAffiliated withThe MITRE Corporation

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Methane clathrates are stable at depths greater than about 200 m in permafrost regions and in ocean sediments at water depths greater than about 250 m, provided bottom waters are sufficiently cold. The thickness of the clathrate stability zone depends on surface temperature and geothermal gradient. Average stability zone thickness is about 400 m in cold regions where average surface temperatures are below freezing, 500 m in ocean sediments, and up to 1,500 m in regions of very cold surface temperature (<-15 °C) or in the deep ocean. The concentration of methane relative to water within the zone of stability determines whether or not clathrate will actually occur. The geologic setting of clathrate occurrences, the isotopic composition of the methane, and the methane to ethane plus propane ratio in both the clathrates and the associated pore fluids indicate that methane in clathrates is produced chiefly by anaerobic bacteria. Methane occurrences and the organic carbon content of sediments are the bases used to estimate the amount of carbon currently stored as clathrates. The estimate of about 11,000 Gt of carbon for ocean sediments, and about 400 Gt for sediments under permafrost regions is in rough accord with an independent estimate by Kvenvolden of 10,000 Gt.

The shallowness of the clathrate zone of stability makes clathrates vulnerable to surface disturbances. Warming by ocean flooding of exposed continental shelf, and changes in pressure at depth, caused, for example, by sea-level drop, destabilize clathrates under the ocean, while ice-cap growth stabilizes clathrates under the ice cap. The time scale for thermal destabilization is set by the thermal properties of sediments and is on the order of thousands of years. The time required to fix methane in clathrates as a result of surface cooling is much longer, requiring several tens of thousands of years. The sensitivity of clathrates to surface change, the time scales involved, and the large quantities of carbon stored as clathrate indicate that clathrates may have played a significant role in modifying the composition of the atmosphere during the ice ages. The release of methane and its subsequent oxidation to carbon dioxide may be responsible for the observed swings in atmospheric methane and carbon dioxide concentrations during glacial times. Because methane and carbon dioxide are strong infrared absorbers, the release and trapping of methane by clathrates contribute strong feedback mechanisms to the radiative forcing of climate that results from earth's orbital variations.