, Volume 22, Issue 2, pp 99-119

Characterizing the distribution of observed precipitation and runoff over the continental United States

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


This paper describes the development of a comprehensive geographic database of historical precipitation and runoff measurements for the conterminous U.S. The database is used in a spatial analysis to characterize large scale precipitation and runoff patterns and to assess the utility and limitations of using historical hydro-meteorological data for providing spatially distributed precipitation estimates at regional and continental scales. Long-term annual average precipitation (P) and runoff (Q) surfaces (geographically referenced, digital representations of a continuous spatial distribution) generated from interpolation of point measurements are used in a distributed water balance calculation to check the reliability of precipitation estimates. The resulting input-output values (P- Q) illustrate the deficiency (sparse distribution and low elevation bias) of historical precipitation measurements in the mountainous western U.S. where snowmelt is an important component of the annual runoff. The incorporation of high elevation snow measurements into the precipitation record significantly improves the water balance estimates in some areas and enhances the utility of historical data for providing spatially distributed precipitation estimates in topographically diverse regions. Regions where the use of historical precipitation data may be most limited for precipitation estimation are identified and alternatives to the use of interpolated historical data for precipitation estimation across large heterogenous regions are suggested. The research establishes a database for continental scale studies and provides direction for the successful development of spatially distributed regional scale water balance models.