Climatic Change

, Volume 17, Issue 2, pp 305-330

First online:

Shrubland encroachment in southern New Mexico, U.S.A.: An analysis of desertification processes in the American southwest

  • Herbert D. GroverAffiliated withTechnology Application Center, University of New Mexico
  • , H. Brad MusickAffiliated withTechnology Application Center, University of New Mexico

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


The area dominated by the shrubs creosotebush (Larrea tridentata) and mesquite (Prosopis glandulosa) in the American southwest has increased several-fold over the last century, with a corresponding decrease in areal coverage of productive grasslands and increased surface soil erosion throughout the region. The factors thought to be responsible for this regional shift in vegetation are: (1) overgrazing by domestic livestock; (2) fire suppression; and (3) historical changes in climate. We examine the evidence concerning each of these factors and develop a synthetic model outlining the principles affecting shrubland encroachment, which focuses on life history characteristics of the dominant shrubs and a number of positive biotic and edaphic feedback mechanisms contributing to their establishment and persistence. We conclude that the expansion of shrub dominance that has occurred over the last century may have been triggered by extreme live-stock overgrazing at the end of the nineteenth century, which coincided with rainfall regimes that were unfavorable for perennial grass growth. Hence, the landscape we observe today may be a product of positive feedback mechanisms triggered over a century ago by management practices that were uninformed with regard to the importance of historical climate patterns and the life history characteristics of important rangeland species. Our consideration of these issues also addresses potential land surface - climate interactions that could occur as a result of regional alterations in vegetation dominance and physiognomy.