Skip to main content
Log in

Population genetics of the metabolically related Adh, Gpdh and Tpi polymorphisms in Drosophila melanogaster I. Geographic variation in Gpdh and Tpi allele frequencies in different continents

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Among Australasian populations from above 32.5° latitude there is a significant negative relationship between Gpdh F frequency and distance from the equator which is not explained by gametic disequilibrium with the linked inversion In(2L)t. This is consistent with the associations reported earlier for Gpdh F among populations covering comparable latitudes in North America and Europe/Asia. By contrast, Tpi allele frequencies are found to be significantly associated with distance from the equator in Australasia but not North America or Europe/Asia. The Tpi pattern in the different zones is essentially the same as that reported earlier for the Acph polymorphism, which maps only 0.2 cM away from the Tpi locus.

There are now ten enzyme polymorphisms in D. melanogaster which have been screened for latitudinal associations in Australasia, North America and Europe/Asia. Allele frequencies at six of these loci show significant relationships with distance from the equator which are consistent across all three zones. These latitudinal associations are more prevalent for Group II than Group I enzymes. Values of genic heterozygosity averaged over the ten polymorphic loci and eleven other monomorphic systems do not vary with latitude but differ substantially between zones. Values of Nei's genetic distance between North American and European/Asian populations calculated from all 21 systems are equivalent to subspecific differences elsewhere in the genus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anxolabéhère D., Nouand D. & Périquet G., 1982a. Étude de la variabilité du système P-M de dysgénésis des hybrides entre populations de Drosophila melanogaster. C. r. Acad. Sci., Paris Serie III, 294: 913–918.

    Google Scholar 

  • Anxolabéhère D., Nouand D. & Périquet G., 1982b. Cytotype polymorphism of the P-M system in two wild populations of Drosophila melanogaster. Proc. natn. Acad. Sci. U.S.A. 79: 1801–1803.

    Google Scholar 

  • Band H. T., 1975. A survey of isozyme polymorphism in a Drosophila melanogaster natural population. Genetics 80: 761–771.

    Google Scholar 

  • Cavener D. R. & Clegg M. T., 1981, Multigenic response to ethanol in Drosophila melanogaster. Evolution 35: 1–10.

    Google Scholar 

  • Chiang P. K., 1972. Flight muscle triosephosphate isomerase of the mosquito, Aedes aegypti and the housefly, Musca domestica. Insect Biochem. 2: 257–278.

    Google Scholar 

  • Coyne J. A., 1982. Gel electrophoresis and cryptic protein variation. In: M. C. Rattazzi, J. C. Scandalios & G. S. Watt, eds, Isozymes: current topics in biological and medical research, Vol. 6. pp. 1–32. A. R. Liss Inc., New York.

    Google Scholar 

  • Engels W. R. & Preston C. R., 1980. Components of hybrid dysgenesis in a wild population of Drosophila melanogaster. Genetics 95: 111–128.

    Google Scholar 

  • Fox D. J., 1971. The soluble citric acid cycle enzymes of Drosophila melanogaster I. Genetics and ontogeny of NADP-linked isocitrate dehydrogenase. Biochem. Genet. 5: 69–80.

    Google Scholar 

  • Franklin I. R., 1981. An analysis of temporal variation at isozyme loci in Drosophila melanogaster. In: J. B. Gibson and J. G. Oakeshott, eds, Genetic studies of Drosophila populations, pp. 217–236. Australian National University, Canberra.

    Google Scholar 

  • Geer B. W., McKechnie S. W. & Langevin M. L., 1983. Regulation of L-glyeerol-3-phosphate dehydrogenase in Drosophila melanogaster larvae by dietary ethanol and sucrose. J. Nutr. 113: 1632–1642.

    Google Scholar 

  • Gonzalez A. M., Cabrera V. M., Larruga J. M. & Gullón A., 1982. Genetic distance in the sibling species Drosophila melanogaster, Drosophila simulans and Drosophila mauritiana. Evolution 36: 517–522.

    Google Scholar 

  • Henderson N. R. & Lambert D. M., 1982. No significant deviation from random mating of worldwide populations of Drosophila melanogaster. Nature 300: 437–440.

    Google Scholar 

  • Knibb W. R., 1983. Chromosome inversion polymorphisms in Drosophila melanogaster III. Gametic disequilibria and the contributions of inversion clines to the ADH and GPDH allozyme clines in Australasia. Genetica 61: 139–146.

    Google Scholar 

  • Knibb W. R., Oakeshott J. G. & Gibson J. B., 1981. Chromosome inversion polymorphisms in Drosophila melanogaster. I. Latitudinal clines and associations between inversions in Australasian populations. Genetics 98: 833–847.

    Google Scholar 

  • Kojima K-I., Gillespie J. & Tobari Y. N., 1970. A profile of Drosophila species' enzymes assayed by electrophoresis I. Number of alleles, heterozygosities, and linkage disequilibrium in glucose-metabolising systems and some other systems. Biochem. Genet. 4: 627–637.

    Google Scholar 

  • MacIntyre R. J., 1966. The genetics of an acid phosphatase in Drosophila melanogaster and Drosophila simulans. Genetics 53: 461–474.

    Google Scholar 

  • McKechnie, S. W. & Geer, B. W., 1984. Regulation of alcohol dehydrogenase in Drosophila melanogaster by dietary alcohol and carbohydrate. Insect Biochem. (in press).

  • McKechnie S. W., Kohane M. & Phillips S. C., 1981. A search for interacting polymorphic enzyme loci in Drosophila melanogaster. In: J. B. Gibson and J. G. Oakeshott, eds, Genetic studies of Drosophila populations pp. 121–138. Australian National University, Canberra.

    Google Scholar 

  • Nei M., 1972. Genetic distance between populations. Am. Nat. 106: 283–292.

    Google Scholar 

  • Nei M., 1976. Mathematical models of speciation and genetic distance. In: S. Karlin and E. Nevo, eds, Population genetics and ecology pp. 723–765. Academic Press, New York.

    Google Scholar 

  • Oakeshott J. G., Chambers G. K., Gibson J. B., Eanes W. F. & Willcocks D. A., 1983a. Geographic variation in G6pd and Pgd allele frequencies in Drosophila melanogaster. Heredity 50: 67–72.

    Google Scholar 

  • Oakeshott J. G., Chambers G. K., Gibson J. B. & Willcocks D. A., 1981. Latitudinal relationships of esterase-6 and phosphoglucomutase gene frequencies in Drosophila melanogaster. Heredity 47: 385–396.

    Google Scholar 

  • Oakeshott J. G., Gibson J. B., Anderson P. R., Knibb W. R., Anderson D. G. & Chambers G. K., 1982. Alcohol dehydrogenase and glycerol-3-phosphate dehydrogenase clines in Drosophila melanogaster on different continents. Evolution 36: 86–96.

    Google Scholar 

  • Oakeshott J. G., Gibson J. B., Chambers G. K. & Willcocks D. A., 1983b. Latitudinal variation in octanol dehydrogenase and acid phosphatase allele frequencies in Drosophila melanogaster. Theor. appl. Genet. 65: 191–196.

    Google Scholar 

  • O'Brien S. J. & MacIntyre R. J., 1969. An analysis of gene-enzyme variability in natural populations of Drosophila melanogaster and D. simulans. Am. Nat. 103: 97–113.

    Google Scholar 

  • Piazza A., Menozzi P. & Cavalli-Sforza L. L., 1981. Synthetic gene frequency maps of man and selective effects of elimate. Proc. natn. Acad. Sci. U.S.A. 78: 2638–2642.

    Google Scholar 

  • Sacktor B., 1974. Biological oxidations and energetics in insect mitochondria. In: M. Rockstein, ed., The physiology of insecta pp. 271–353. Academic Press, New York.

    Google Scholar 

  • Singh R. S., Hickey D. A. & David J., 1982. Genetic differentiation between geographically distant populations of Drosophila melanogaster. Genetics 101: 235–256.

    Google Scholar 

  • Soulé M., 1973. The epistasis cycle: a theory of marginal populations. A. Rev. Ecol. Syst. 4: 165–187.

    Google Scholar 

  • Voelker R. A., Cockerham C. C., Johnson F. M., Schaffer H. E., Mukai T. & Mettler L. E., 1978. Inversions fail to account for allozyme clines. Genetics 88: 515–527.

    Google Scholar 

  • Voelker R. A., Ohnishi S. & Langley C. H., 1979. Genetic and cytogenetic studies of four glycolytic enzymes in Drosophila melanogaster: aldolase, triosephosphate isomerase, 3-phosphoglycerate kinase and phosphoglucomutase. Biochem. Genet. 17: 769–783.

    Google Scholar 

  • Wilks A. V., Gibson J. B., Oakeshott J. G. & Chambers G. K., 1980. An electrophoretically cryptic alcohol dehydrogenase variant in Drosophila melanogaster II. Post electrophoresis heat treatment screening of natural populations. Aust. J. Biol. Sci. 33: 575–585.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oakeshott, J.G., McKechnie, S.W. & Chambers, G.K. Population genetics of the metabolically related Adh, Gpdh and Tpi polymorphisms in Drosophila melanogaster I. Geographic variation in Gpdh and Tpi allele frequencies in different continents. Genetica 63, 21–29 (1984). https://doi.org/10.1007/BF00137461

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00137461

Keywords

Navigation