, Volume 6, Issue 12, pp 857-860

The effects of temperature on the behaviour of an apatitic calcium phosphate cement

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

An apatitic calcium phosphate cement is obtained by mixing α-tricalcium phosphate (α-TCP) and precipitated hydroxyapatite into a cement powder, and by then mixing this powder with an aqueous solution of Na2HPO4 as an accelerator. Setting times were reduced by about 30% by increasing the temperature from 22 to 37°C. Compressive strength reached higher intermediate and final values at 37 °C. Degrees of transformation of the α-TCP in the resulting calcium-deficient hydroxyapatite (CDHA) were much higher at 37 °C after 24 h of storage in Ringer's solution according to X-ray diffraction. Differential scanning calorimetry indicated that the rate of reaction increased by a factor of about 5 when the temperature was increased from 25 to 37 °C. Scanning electron microscopy showed that the microstructure was more homogeneous and that a more tight entanglement of the precipitated CDHA crystals occurred after storage at 37 °C than at room temperature.