, Volume 85, Issue 3, pp 211-221

First online:

Genetic variation in sympatric populations of diploid and polyploid brine shrimp (Artemia parthenogenetica)

  • Lei ZhangAffiliated withDepartment of Zoology, Oregon State University
  • , Charles E. KingAffiliated withDepartment of Zoology, Oregon State University

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


We examined genetic variation in sympatric diploid and polyploid brine shrimp Artemia parthenogenetica from each of three populations (China, Italy and Spain). Italian and Spanish tetraploids are closely related (I=0.964). Diploids and tetraploids within each of the two European populations are also closely related (mean I=0.905). Most alleles found in diploids also exist in sympatric polyploids. In contrast, the asexual Artemia (2N, 4N and 5N) in our study share few alleles with their close sexual relative, A. tunisiana (mean I=0.002). These results, as well as the work of other authors, strongly suggest that at least the tetraploid Artemia in our study have an autopolyploid origin.

Clonal diversity of polyploid Artemia can be very high at least in some population. Both diploids and polyploids had low clonal diversities in the populations dominated by polyploids and high clonal diversities in the population dominated by diploids.

The most common genotypes of sympatric diploid and polyploid Artemia frequently differed. Some alleles occurred only in diploids, while others were restricted to polyploids. These results suggest that polyploidy in Artemia has led to genetic divergence from diploid progenitors, and that ploidy-level variation must also be considered in developing an understanding of spatial and temporal allozyme polymorphism in asexual populations.

Key words

Artemia clonal diversity genetic divergence polyploidy