, Volume 8, Issue 3, pp 1-7

Dynamic analysis of drug action on in vitro reconstituted thyroid follicle by microinjection of tracer molecules and videomicroscopy

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Thyroid cells isolated from the gland by trypsinization are capable in culture of reconstituting histiotypic structures, the thyroid follicles. This morphological differentiation requires the presence of the main thyroid regulator; thyrotropin. We have analyzed some structural and functional aspects of in vitro reconstituted thyroid follicles (RTF) using microinjection of fluorescent probes and videomicroscopy. This experimental approach allowed to visualize biological processes and actions of drugs, signalling factors, etc. in living cells. We describe here some examples of what can be studied with this powerful still-undervalued method. Microinjection of a cell-impermeant fluorescent probe of either high or low molecular mass into the lumen of RTF allowed to check the tightness of this compartment and therefore to analyze the control of tight junctions assembly. A small cell-impermeant probe like Lucifer Yellow microinjected into a cell was used to demonstrate and then to study the regulation of cell to cell communication via gap junctions. The presence of calcium in the lumen of RTF was detected by microinjection of a properly designed probe: Calcium Green which becomes fluorescent in the presence of the ligand. The lumen to cell transport or endocytosis of thyroglobulin, the thyroid prohormone, which is stored into the lumen of the follicles, is currently studied by microinjection of TRITC-labeled thyroglobulin. Coupled to image processing and videorecorder systems, kinetic analysis and quantitative measurements can be performed.