, Volume 8, Issue 1, pp 3-18

The spatial extent and relative influence of landscape-level factors on wintering bird populations

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


The influences of the landscape matrix (complex of habitats surrounding a study plot) and within-patch vegetation were studied in bird communities wintering in the piedmont of Georgia, USA. Variation at the landscape and within-patch levels was controlled to reduce the likelihood of confounding and spurious relationships. The landscape matrix within 500 m of each study plot was quantified from aerial photographs. Statistical models using landscape matrix and within-patch vegetation variables explained 73–84% of variation in bird abundance and diversity among sites with landscape matrix variables accounting for 30–90% of the variation. Variation in bird species richness and diversity was explained solely by landscape variables. Models for individual species such as Carolina Wrens (Thyrothorus ludovicianus) and Rufous-sided Towhees (Pipilo erythrophthalmus) had r2 > 0.80, with the landscape matrix variables accounting for the majority of this variation. However, other species like Northern Cardinals (Cardinalis cardinalis) and White-throated Sparrows (Zonotrichia albicollis) were most strongly influenced by within-plot vegetation. The landscape influence extended beyond habitats immediately adjacent to the study plots as indicated by significant variables describing variation in more distant habitat patches. These analyses illustrate a technique for comparing the strength of within-patch versus landscape influences and measuring the spatial extent of the landscape influence in fine-grained landscapes.

Report No. 3955, Environmental Sciences Division, Oak Ridge National Laboratory.

This research received funding from the Ecological Research Division, Office of Health and Environmental Research, U.S. Department of Energy, under Contract No. DE-AC05-84OR21400 with Martin Marietta Energy Systems, Inc.