, Volume 1, Issue 1, pp 15-22

Quadratic programming with one negative eigenvalue is NP-hard

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

We show that the problem of minimizing a concave quadratic function with one concave direction is NP-hard. This result can be interpreted as an attempt to understand exactly what makes nonconvex quadratic programming problems hard. Sahni in 1974 [8] showed that quadratic programming with a negative definite quadratic term (n negative eigenvalues) is NP-hard, whereas Kozlov, Tarasov and Hačijan [2] showed in 1979 that the ellipsoid algorithm solves the convex quadratic problem (no negative eigenvalues) in polynomial time. This report shows that even one negative eigenvalue makes the problem NP-hard.

This author's work supported by the Applied Mathematical Sciences Program (KC-04-02) of the Office of Energy Research of the U.S. Department of Energy under grant DE-FG02-86ER25013. A000 and in part by the National Science Foundation, the Air Force Office of Scientific Research, and the Office of Naval Research, through NSF grant DMS 8920550.