, Volume 81, Issue 2, pp 105-121

Two-point coherence in the atmospheric surface layer

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Two-point, one-dimensional coherence in horizontally homogeneous atmospheric turbulence is studied, both by experiment and analysis. Measurements are carried out using horizontally spaced sensors with the separation perpendicular to the mean velocity. Two-dimensional spectral models and three-dimensional inertial-range spectral tensors are used in the coherence calculations. The one-dimensional coherence for both velocity and scalar fluctuations is found to roll off at a wavenumber much smaller than we would expect from the classical notion of eddy correlation. This is a consequence of the cancellation of Fourier components aliased from the direction of the sensor separation into the streamwise direction. However, the coherence for the three velocity components behaves somewhat differently, reflecting the relative orientations of the velocity component, sensor separation and the mean velocity. These features are well predicted by the calculation. The analysis is also extended to calculate the two-point scalar-vertical velocity cospectrum and the results are in good agreement with our experimental data. The ratio of two- to one-point cospectra decreases at slightly larger wavenumber than the two-point scalar coherence does.