Angluin, D. (1980). Finding patterns common to a set of strings.*J. of Computer and System Sciences*,*21*, 46–62.

Angluin, D. (1988). Queries and concept learning.*Machine Learning*,*2*, 319–342.

Angluin, D. and Valiant, L.G. (1979). Fast probabilistic algorithms for Hamiltonian circuits and matchings.*J. Computer and System Sciences*,*18*, 155–193.

Baum, E.B. (1989). On learning a union of half spaces. Unpublished manuscript.

Blumer, A., Ehrenfeucht, a., Haussler, D., and Warmuth, M.K. (1987). Occam's razor.*Information Processing Letters*,*24*, 377–380.

Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth, M.K. (1989). Learnability and the Vapnik-Chervonenkis dimension.*J. of the Association for Computing Machinery*,*36*, 929–965.

Board, R. and Pitt, L. (1990). On the necessity of Occam algorithms. (In press)*Proceedings of the Twenty-second Annual ACM Symposium on Theory of Computing*. New York, NY: ACM Press.

Boucheron, S. and Sallantin, J. (1988). Some remarks about space-complexity of learning, and circuit complexity of recognizing.*Proceedings of the 1988 Workshop on Computational Learning Theory* (pp. 125–138). San Mateo, CA: Morgan Kaufman.

Ehrenfeucht, A. and Haussler, D. (1989). Learning decision trees from random examples.*Information and Computation*,*3*, 231–246.

Floyd, S. (1989). Space-bounded learning and the Vapnik-Chervonenkis dimension.*Proceedings of the Second Annual Workshop on Computational Learning Theory* (pp. 349–364). San Mateo, CA: Morgan Kaufman.

Haussler, D. (1988).*Space efficient learning algorithms* (Technical Report UCSC-CRL-88–2). Santa Cruz, CA: University of California, Baskin Center for Computer Engineering and Information Sciences.

Haussler, D., Kearns, M., Littlestone, N., and Warmuth, M.K. (1988). Equivalence of models for polynomial learnability.*Proceedings of the 1988 Workshop on Computational Learning Theory* (pp. 42–55). San Mateo, CA: Morgan Kaufman.

Haussler, D., Littlestone, N., and Warmuth, M.K. (1987). Expected mistake bounds for on-line learning algorithms. Unpublished manuscript.

Haussler, D., Littlestone, N., and Warmuth, M.K. (1988). Predicting {0, 1}-functions on randomly drawn points.*Proceedings of the Twenty-Ninth Annual Symposium on Foundations of Computer Science* (pp. 100–109). Washington, DC: IEEE Computer Society Press.

Helmbold, D., Sloan, R., and Warmuth, M.K. (1990). Learning nested differences of intersection-closed concept classes.*Machine Learning*, 5, xxx-xxx.

Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables.*J. of the American Statistical Association*,*58*, 13–30.

Kearns, M. (1988). Thoughts on hypothesis boosting. Unpublished manuscript.

Kearns, M. (1989).*The Computational Complexity of Machine Learning*. Doctoral dissertation, Department of Computer Science, Harvard University, Cambridge, MA.

Kearns, M., Li, M., Pitt, L., and Valiant, L. (1987). On the learnability of Boolean formulae.*Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing* (pp. 285–295). New York, NY: ACM Press.

Kearns, M. and Valiant, L.G. (1988).*Learning Boolean formulae or finite automata is as hard as factoring* (Technical Report TR-14–88). Cambridge, MA: Harvard University Aiken Computation Laboratory.

Kearns, M. and Valiant, L.G. (1989). Cryptographic limitations on learning Boolean formulae and finite automata.*Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing* (pp. 433–444). New York, NY: ACM Press.

Pitt, L. and Valiant, L.G. (1988). Computational limitations on learning from examples.*J. of the Association for Computing Machinery*,*35*, 965–984.

Rivest, R.L. (1987). Learning decision lists.*Machine Learning*,*2*, 229–246.

Schapire, R.E. (1989). Pattern languages are not learnable. Unpublished manuscript.

Valiant, L.G. (1984). A theory of the learnable.*Communications of the ACM*,*27*, 1134–1142.