, Volume 50, Issue 1, pp 73-88

The global solution of the N-body problem

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


The problem of finding a global solution for systems in celestial mechanics was proposed by Weierstrass during the last century. More precisely, the goal is to find a solution of the n-body problem in series expansion which is valid for all time. Sundman solved this problem for the case of n = 3 with non-zero angular momentum a long time ago. Unfortunately, it is impossible to directly generalize this beautiful theory to the case of n > 3 or to n = 3 with zero-angular momentum.

A new ‘blowing up’ transformation, which is a modification of McGehee's transformation, is introduced in this paper. By means of this transformation, a complete answer is given for the global solution problem in the case of n > 3 and n = 3 with zero angular momentum.

The main result in this paper has appeared in Chinese in Acta Astro. Sinica. 26 (4), 313–322. In this version some mistakes have been rectified and the problems we solved are now expressed in a much clearer fashion.