1.

R.K. Dodd, J.C. Eilbeck, J.D. Gibbons and H.C. Morris, *Solitons and Nonlinear Wave Equations*. London Academic Press (1982).

2.

P.G. Drazin and R.S. Johnson, *Solitons: An Introduction*. University Press, Cambridge (1989).

3.

J.D. Josephson, Supercurrents through barriers, *Advances in Physics* 14 (1965) 419–451.

4.

P.L. Christiansen and P.S. Lomdahl, Numerical solution of 2+1 dimensional Sine-Gordon solitons. *Physica* 2D (1981) 482–494.

5.

R. Hirota, Exact three-soliton solution of the two-dimensional Sine-Gordon equation. *J. Phys. Soc. Japan* 35 (1973) 1566.

6.

J. Zagrodzinsky, Particular solutions of the Sine-Gordon equation in 2+1 dimensions. *Phys. Lett.* 72A (1979) 284–286.

7.

P.L. Christiansen, and O.H. Olsen, Ring-shaped quasi-soliton solutions to the two and three-dimensional Sine-Gordon equations. *Physica Scripta* 20 (1979) 531–538.

8.

G. Leibbrandt, New exact solutions of the classical Sine-Gordon equation in 2+1 and 3+1 dimensions. *Phys. Rev. Lett.* 41 (1978) 435–438.

9.

P. Kaliappan and M. Lakhshmanan, Kadomtsev-Petviashvili, two dimensional Sine-Gordon equations: reduction to Painleve transcendents. *J. Phys. A.: Math. Gen.* 12 (1979) L249-L252.

10.

J. Argyris, M. Haase and J.C. Heinrich, Finite element approximation to two-dimensional Sine-Gordon solitons. *Computer Methods in Applied Mechanics and Engineering* 86 (1991) 1–26.

11.

K. Nakajima, Y. Onodera, T. Nakamura and R. Sato, Numerical analysis of vortex motion on Josephson structures. *Journal of Applied Physics* 45(9) (1974) 4095–4099.

12.

B.A. Malomed, Dynamics of quasi-one-dimensional kinks in the two dimensional Sine-Gordon model. *Physica D*, 52 (1991) 157–170.

13.

I.S. Greig and J.Ll. Morris, A Hopscotch method for the Korteweg-de Vries equation. *J. Comput. Phys.* 20 (1976) 64–80.

14.

E.H. Twizell, Y. Wang and W.G. Price, Chaos-free numerical solutions of reaction-diffusion equations. *Proc. R. Soc. Lond.* A 430 (1991) 541–576.

15.

J.D. Lambert, *Numerical Methods for Ordinary Differential Systems: The Initial Value Problem*. John Wiley and Sons 1991.

16.

Y.I. Shokin, Springer-Verlag, Berlin, Heidelberg, *The Method of Differential Approximation*. New York (1983).

17.

E. Turkel, Phase error and stability of second order methods for hyperbolic problems. *J. Comput. Phys.* 15 (1974) 226–250.