Skip to main content
Log in

Simulation of multidimensional community patterns: towards a comprehensive model

  • Published:
Vegetatio Aims and scope Submit manuscript

Abstract

Simulated data, derived from descriptive models of community variation along ecological gradients, are useful for the evaluation of ordination techniques and other numerical methods for the analysis of community data. Existing approaches to the simulation of community patterns are based on restrictive assumptions, although there is evidence supporting several alternative models. Simulation studies should aim to assess the robustness of analytical techniques to variations in model properties. This paper describes a modelling procedure which encompasses most current concepts and hypotheses about the properties of community patterns. The procedure has been used to assess the comparative robustness of several ordination techniques and to examine the effectiveness of alternative coefficients of compositional dissimilarity. COMPAS, a FORTRAN 77 computer program which implements the modelling procedure, is available on application to the author.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Austin M. P. 1976. On non-linear species response models in ordination. Vegetatio 33: 33–41.

    Google Scholar 

  • Austin M. P. 1980. Searching for a model for use in vegetation analysis. Vegetatio 42: 11–21.

    Google Scholar 

  • Austin M. P. 1981. The role of certain diversity properties in vegetation classification. In: A. N. Gillison & D. J. Anderson (eds), Vegetation classification in Australia, pp. 125–140. A. N. U. Press, Canberra.

    Google Scholar 

  • Austin M. P. 1985. Continuum concept, ordination methods and niche theory. Ann. Rev. Ecol. Syst. 16: 39–61.

    Google Scholar 

  • Austin M. P. 1987. Models for the analysis of species' response to environmental gradients. Vegetatio 69: 35–45.

    Google Scholar 

  • Austin M. P. & Austin B. O. 1980. Behaviour of experimental plant communities along a nutrient gradient. J. Ecol. 68: 891–918.

    Google Scholar 

  • Austin M. P. & Cunningham R. B. 1981. Observational analysis of environmental gradients. Proc. Ecol. Soc. Aust. 11: 109–119.

    Google Scholar 

  • Austin M. P. Cunningham R. B. & Fleming P. M. 1984. New approaches to direct gradient analysis using environmental scalars and statistical curve-fitting procedures. Vegetatio 55: 11–27.

    Google Scholar 

  • Austin M. P. Cunningham R. B. & Good R. B. 1983. Altitudinal distribution of several eucalypt species in relation to other environmental factors in southern New South Wales. Aust. J. Ecol. 8: 169–180.

    Google Scholar 

  • Ellenberg H. 1953. Physiologisches und ökologisches Verhalten derselben Pflanzenarten. Ber. Deutsch. Bot. Ges. 65: 350–361.

    Google Scholar 

  • Ellenberg H. 1954. Über einige Fortschritte der kausalen Vegetationskunde. Vegetatio 5/6: 199–211.

    Google Scholar 

  • Faith D. P. Minchin P. R. & Belbin L. 1987. Compositional dissimilarity as a robust measure of ecological distance. Vegetatio 69: 57–68.

    Google Scholar 

  • Fresco L. F. M. 1982. An analysis of species response curves and of competition from field data: some results from heath vegetation. Vegetatio 48: 175–185.

    Google Scholar 

  • Gauch H. G. 1982. Noise reduction by eigenvector ordinations. Ecology 63: 1643–1649.

    Google Scholar 

  • Gauch H. G. Chase G. B. & Whittaker R. H. 1974. Ordination of vegetation samples by Gaussian species distributions. Ecology 55: 1382–1390.

    Google Scholar 

  • Gauch H. G. & Whittaker R. H. 1972. Coenocline simulation. Ecology 53: 446–451.

    Google Scholar 

  • Gauch H. G. & Whittaker R. H. 1976. Simulation of community patterns. Vegetatio 33: 13–16.

    Google Scholar 

  • Gauch H. G. & Whittaker R. H. 1981. Hierarchical classification of community data. J. Ecol. 69: 537–557.

    Google Scholar 

  • Gauch H. G. Whittaker R. H. & Singer S. B. 1981. A comparative study of nonmetric ordinations. J. Ecol. 69: 135–152.

    Google Scholar 

  • Greig-Smith P. 1980. The development of numerical classification and ordination. Vegetatio 42: 1–9.

    Google Scholar 

  • Grime J. P. 1973. Control of species density in herbaceous vegetation. J. Environ. Manage. 1: 151–167.

    Google Scholar 

  • Hill M. O. & Gauch H. G. 1980. Detrended correspondence analysis, an improved ordination technique. Vegetatio 42: 47–58.

    Google Scholar 

  • Kenkel N. C. & Orlóci L. 1986. Applying metric and nonmetric multidimensional scaling to ecological studies: some new results. Ecology 67: 919–928.

    Google Scholar 

  • Lagonegro M. 1984. Spaghet: a coenocline simulator useful to calibrate software detectors. Stud. Geobot. 4: 63–99.

    Google Scholar 

  • Margules C. R. Nicholls A. O. & Austin M. P. 1987. Diversity of Eucalyptus species predicted by a multi-variable environmental gradient. Oecologia 71: 229–232.

    Google Scholar 

  • Minchin, P. R. 1983. A comparative evaluation of techniques for ecological ordination using simulated vegetation data and an integrated ordination-classification analysis of the alpine and subalpine plant communities of the Mt Field plateau, Tasmania, Ph.D. thesis, University of Tasmania.

  • Minchin P. R. 1987. An evaluation of the relative robustness of techniques for ecological ordination. Vegetatio 69: 89–107.

    Google Scholar 

  • Mohler C. L. 1981. Effects of sample distribution along gradients on eigenvector ordination. Vegetatio 45: 141–145.

    Google Scholar 

  • Mueller-Dombois D. & Ellenberg H. 1974. Aims and methods of vegetation ecology. John Wiley & Sons, New York.

    Google Scholar 

  • Mueller-Dombois D. & Sims H. P. 1966. Response of three grasses to two soils and a water table depth gradient. Ecology 47: 644–648.

    Google Scholar 

  • Okland R. H. 1986. Rescaling of ecological gradients. I. The effect of scale on symmetry of species response curves. Nord. J. Bot. 6: 661–669.

    Google Scholar 

  • Peet R. K. 1978. Forest vegetation of the Colorado Front Range: patterns of species diversity. Vegetatio 37: 65–78.

    Google Scholar 

  • Prentice I. C. 1980. Vegetation analysis and order invariant gradient models. Vegetatio 42: 27–34.

    Google Scholar 

  • Swan J. M. A. 1970. An examination of some ordination problems by use of simulated vegetational data. Ecology 51: 89–102.

    Google Scholar 

  • Werger M. J. A. Louppen J. M. W. & Eppink J. H. M. 1983. Species performance and vegetation boundaries along an environmental gradient. Vegetatio 52: 141–150.

    Google Scholar 

  • Westman W. E. 1980. Gaussian analysis: identifying environmental factors influencing bell-shaped species distributions. Ecology 61: 733–739.

    Google Scholar 

  • Whittaker R. H. 1956. Vegetation of the Great Smoky Mountains. Ecol. Monogr. 26: 1–80.

    Google Scholar 

  • Whittaker R. H. 1960. Vegetation of the Siskiyou Mountains, Oregon and California. Ecol. Monogr. 30: 279–338.

    Google Scholar 

  • Whittaker R. H. 1967. Gradient analysis of vegetation. Biol. Rev. 42: 207–264.

    Google Scholar 

  • Whittaker R. H. 1970. Communities and ecosystems. 1st ed. Macmillan, London.

    Google Scholar 

  • Whittaker R. H. & Gauch H. G. 1978. Evaluation of ordination techniques. In: R. H. Whittaker (ed.), Ordination of plant communities, pp. 227–336. Junk, The Hague.

    Google Scholar 

  • Whittaker R. H. & Niering W. A. 1965. Vegetation of the Santa Catalina Mountains, Arizona. II. A gradient analysis of the South slope. Ecology 46: 429–452.

    Google Scholar 

  • Whittaker R. H. & Niering W. A. 1975. Vegetation of the Santa Catalina Mountains, Arizona. V. Biomass, production and diversity along the elevation gradient. Ecology 56: 771–790.

    Google Scholar 

  • Wilson M. V. & Mohler C. L. 1983. Measuring compositional change along gradients. Vegetatio 54: 129–141.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minchin, P.R. Simulation of multidimensional community patterns: towards a comprehensive model. Vegetatio 71, 145–156 (1987). https://doi.org/10.1007/BF00039167

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00039167

Key words

Navigation