, Volume 174, Issue 1-2, pp 211-224

Biological N2 fixation by heterotrophic and phototrophic bacteria in association with straw

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Much of the crop residues, including cereal straw, that are produced worldwide are lost by burning. Plant residues, and in particular straw, contain large amounts of carbon (cellulose and hemicellulose) which can serve as substrates for the production of microbial biomass and for biological N2 fixation by a range of free-living, diazotrophic bacteria. Microorganisms with the dual ability to utilise cellulose and fix N2 are rate, but some strains that utilize hemicellulose and fix N2 have been found. Generally, cellulolysis and diazotrophy are carried out by a mixed microbial community in which N2-fixing bacteria utilise cellobiose and glucose produced from straw by cellulolytic microorganisms. N2-fixing bacteria include heterotrophic and phototrophic organisms and the latter are apparently more prominent in flooded soils such as rice paddies than in dryland soils. The relative contributions of N2 fixed by heterotrophic diazotrophic bacteria compared with cyanobacteria and other phototrophic bacteria depend on the availability of substrates from straw decomposition and on environmental pressures. Measurements of asymbiotic N2 fixation are limited and variable but, in rice paddy systems, rates of 25 kg N ha-1 over 30 days have been found, whereas in dryland systems with wheat straw, in situ measurements have indicated up to 12 kg N ha-1 over 22 days. Straw-associated N2 fixation is directly affected by environmental factors such as temperature, moisture, oxygen concentration, soil pH and clay content as well as farm management practices. Modification of managements and use of inoculants offer ways of improving asymbiotic N2 fixation.

In laboratory culture systems, inoculation of straws with cellulolytic and diazotrophic microorganisms has resulted in significant increases in N2 fixation in comparison to uninoculated controls and gains of N of up to 72 mg N fixed g-1 straw consumed have been obtained, indicating the potential of inoculation to improve N gains in composts that can then be used as biofertilisers. Soils, on the other hand, contain established, indigenous microbial populations which tend to exclude inoculant microorganisms by competition. As a consequence, improvements in straw-associated N2 fixation in soils have been achieved mostly by specific straw-management practices which encourage microbial activity by straw-decomposing and N2-fixing microorganisms.

Further research is needed to quantify more accurately the contribution of asymbiotic N2 fixation to cropping systems. New strains of inoculants, including those capable of both cellulolytic and N2-fixing activity, are needed to improve the N content of biofertilisers produced from composts. Developments of management practices in farming systems may result in further improvements in N2 fixation in the field.