, Volume 52, Issue 3, pp 183-191

Breaking the crossability barriers between disomic tetraploid Solanum acaule and tetrasomic tetraploid S. tuberosum

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Summary

A combination of compatible second pollinations and embryo rescue was applied for systematic production of true tetraploid hybrids from crosses between disomic tetraploid Solanum acaule and tetrasomic tetraploid potato, S. tuberosum. Several genotypes of tetraploid potatoes were pollinated with S. acaule, and the compatible second pollinations were made on the following day, with a genotype of S. phureja, IvP 35 to promote fruit development. Embryo rescue was carried out in 21 families, 14 to 27 days after the first pollination. A total of eight plants were obtained from the embryo rescue and their chromosome numbers were counted in the root tips. Three of the eight plants were identified as tetraploid, and five others as diploid. Morphology, isozyme banding patterns, and pollen stainability, as well as potato spindle tuber viroid (PSTVd) resistance, indicated the hybrid nature of the three plants. This is the first report of successful tetraploid hybrid production between disomic tetraploid S. acaule (4x) and tetrasomic tetraploid potatoes. Seed set from the crosses between one of hybrids and diploid potatoes indicated workable levels of both male and female fertility for introgression of valuable genes from S. acaule into the cultivated potato gene pool. The methodology used may be applied to other disomic tetraploid tuber-bearing Solanum species and with some modifications also to distantly related solanaceous species and genera.