, Volume 179, Issue 1, pp 89-97

Field responses to added organic matter, arbuscular mycorrhizal fungi, and fertilizer in reclamation of taconite iron ore tailing

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


A three season study was conducted to determine the effect of added composted yard waste, arbuscular mycorrhizal (AM) fungi, and fertilizer on plant cover, standing crop biomass, species composition, AM fungal infectivity and spore density in coarse taconite iron ore tailing plots seeded with a mixture of native prairie grasses. Plant cover and biomass, percent seeded species, mycorrhizal infectivity and spore density were greatly increased by additions of composted yard waste. After three seasons, total plant cover was also greater in plots with added fertilizer. Third season plant cover was also greater in plots amended with the higher rate (44.8 Mg ha−1) of compost than the moderate rate (22.4 Mg ha-1). Field inoculation with AM fungi also increased plant cover during the second season and infectivity during the first two seasons. Seeded native species, consisting mostly of the cover species Elymus canadensis, dominated plot vegetation during the second and third seasons. Dispersal of AM fungal propagules into nonmycorrhizal plots occurred rapidly and increased infectivity in compost-amended plots during the third season. In plots with less than 10% plant cover, AM fungal infectivity of inoculated plots was greatly reduced after the second season. The high level of plant cover and the trend of increasing proportion of mycorrhizal-dependent warm-season grasses, along with increases in infectivity, forecast the establishment of a sustainable native grass community that will meet reclamation goals.