Skip to main content
Log in

Effects of environment on the uptake and distribution of calcium in tomato and on the incidence of blossom-end rot

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Studies of Ca uptake and distribution in relation to environmental variables were used to relate Ca status of tomato fruit to blossom-end rot (BER) incidence. Ca uptake was highly correlated with solar radiation and root temperature. The rate of Ca uptake decreased linearly with increasing salinity. High humidity reduced Ca import by the leaves but increased that by the fruit. While total plant dry weight was reduced more than fruit dry weight by salinity, total Ca uptake and the Ca content of the fruit were decreased similarly. Thus, the concentration of calcium in the fruit was substantially reduced by salinity. The distal half of the fruit contained less Ca than the proximal half. The lowest % Ca was found in the distal placenta and locular tissues, where BER first develops. The incidence of BER was often stimulated more by high salinity achieved with the addition of major nutrients than with NaCl. The cause of BER is usually an interaction between the effects of irradiance and ambient temperature on fruit growth and the effects of environmental stress on calcium uptake and distribution within the whole plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams P 1991 Effect of diurnal fluctuations in humidity on the accumulation of nutrients in the leaves of tomato (Lycopersicon esculentum). J. Hortic. Sci. 66, 545–550.

    Google Scholar 

  • Adams P and Ho L C 1992 The susceptibility of modern tomato cultivars to blossom-end rot in relation to salinity. J. Hortic. Sci. 67, 827–839.

    Google Scholar 

  • Adams P and Holder R 1992 Effects of humidity, Ca and salinity on the accumulation of dry matter and Ca by the leaves and fruit of tomato (Lycopersicon esculentum). J. Hortic. Sci. 67, 137–142.

    Google Scholar 

  • Belda R M and Ho L C 1993 Salinity effect on the network of vascular bundles during tomato fruit development. J. Hortic. Sci. 68, 557–564.

    Google Scholar 

  • Ehret D L and Ho L C 1986 Translocation of calcium in relation to tomato fruit growth. Ann. Bot. 58, 679–688.

    Google Scholar 

  • Ho L C 1989 Environmental effects on the diurnal accumulation of 45Ca by young fruit and leaves of tomato plants. Ann. Bot. 63, 281–288.

    Google Scholar 

  • Raleigh S M and Chucka J A 1944 Effect of nutrient ratio and concentration on growth and composition of tomato plants and on the occurrence of blossom-end rot of the fruit. Plant Physiol 19, 671–678.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adams, P., Ho, L.C. Effects of environment on the uptake and distribution of calcium in tomato and on the incidence of blossom-end rot. Plant Soil 154, 127–132 (1993). https://doi.org/10.1007/BF00011081

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00011081

Key words

Navigation