Plant and Soil

, Volume 131, Issue 2, pp 177-185

First online:

Contribution of the VA mycorrhizal hyphae in acquisition of phosphorus and zinc by maize grown in a calcareous soil

  • S. K. KothariAffiliated withInstitut für Pflanzenernährung, Universität Hohenheim
  • , H. MarschnerAffiliated withInstitut für Pflanzenernährung, Universität Hohenheim
  • , V. RömheldAffiliated withInstitut für Pflanzenernährung, Universität Hohenheim

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


An investigation was carried out to test whether the mechanism of increased zinc (Zn) uptake by mycorrhizal plants is similar to that of increased phosphorus (P) acquisition. Maize (Zea mays L.) was grown in pots containing sterilised calcareous soil either inoculated with a mycorrhizal fungus Glomus mosseae (Nicol. and Gerd.) Gerdemann and Trappe or with a mixture of mycorrhizal fungi, or remaining non-inoculated as non-mycorrhizal control. The pots had three compartments, a central one for root growth and two outer ones for hyphal growth. The compartmentalization was done using a 30-μm nylon net. The root compartment received low or high levels of P (50 or 100 mg kg−1 soil) in combination with low or high levels of P and micronutrients (2 or 10 mg kg−1 Fe, Zn and Cu) in the hyphal compartments.

Mycorrhizal fungus inoculation did not influence shoot dry weight, but reduced root dry weight when low P levels were supplied to the root compartment. Irrespective of the P levels in the root compartment, shoots and roots of mycorrhizal plants had on average 95 and 115% higher P concentrations, and 164 and 22% higher Zn concentrations, respectively, compared to non-mycorrhizal plants. These higher concentrations could be attributed to a substantial translocation of P and Zn from hyphal compartments to the plant via the mycorrhizal hyphae. Mycorrhizal inoculation also enhanced copper concentration in roots (135%) but not in shoots. In contrast, manganese (Mn) concentrations in shoots and roots of mycorrhizal plants were distinctly lower, especially in plants inoculated with the mixture of mycorrhizal fungi.

The results demonstrate that VA mycorrhizal hyphae uptake and translocation to the host is an important component of increased acquisition of P and Zn by mycorrhizal plants. The minimal hyphae contribution (delivery by the hyphae from the outer compartments) to the total plant acquisition ranged from 13 to 20% for P and from 16 to 25% for Zn.

Key words

calcareous soil copper hyphal transport iron maize manganese phosphorus VA-mycorrhiza zinc