, Volume 226, Issue 2, pp 91-101

Effects of water movement on prey capture and distribution of reef corals

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Coral reefs comprise a variety of microhabitats, each with a characteristic pattern of water movement. Variation in flow microhabitat is likely to influence the distribution and abundance of suspension feeders, including the corals. Water flow was measured concurrently with wave heights at 8 depths along the forereef slope in Salt River Canyon, St Croix, U.S.V.I. The greatest flow speeds occurred on the shallow forereef at 7 m depth, where oscillatory wave-induced flow reached speeds over 50 cm s−1. From 7 m to at least 15 m depth, flow decreased and was primarily bidirectional. Below 15 m depth, flow decreased even further, to less than one fifth of that experienced by shallow corals, and was unidirectional. The relationship between particle capture by the corals Meandrina meandrites and Madracis decactis and water flow was studied in the field. Colony morphology and the resulting modification of flow influenced the relationship of flow to feeding success; prey capture by the branching Madracis colonies increased with flow, while that of the flat Meandrina colonies did not. Such relationships may contribute to differences in distribution of corals of divergent morphologies. In transect surveys from 7 to 45 m depth,; branching and mounding corals with tentacular feeding modes were most common in the shallow forereef habitats, and plating corals with small polyps (ciliary mucus feeders) were ubiquitous in the deeper zones.

This paper was presented at the Fifth International Conference on Coelenterate Biology at Southampton, UK in July 1989. A synopsis appears in the Proceedings (Hydrobiologia 216/217: 247–248, 1991).
This paper was presented at the Fifth International Conference on Coelenterate Biology at Southampton, UK in July 1989. A synopsis appears in the Proceedings (Hydrobiologia 216/217: 247–248, 1991).