Eye camouflage and false eyespots: chaetodontid responses to predators

  • Stephen Neudecker
Article

DOI: 10.1007/BF00002208

Cite this article as:
Neudecker, S. Environ Biol Fish (1989) 25: 143. doi:10.1007/BF00002208

Synopsis

The roles of eye camouflage and eyespots are examined within the genusChaetodon as are the various theories explaining the evolutionary significance of the brilliant colors. While eye camouflage is not common among reef fishes, 91% of the 90 species ofChaetodon, have eyemasks (82) or black heads (4). Eye camouflage occurs concomitantly with diurnal false eyespots in 45.5% (41 of 90) of the species. Diurnal false eyespots serve to misdirect attacks by predators and/or to advertise unpalatability. False eyespots are located on areas of the body which allow escape and survival following an attack. Data suggesting that predators learn about the undesirability of butterflyfishes are presented. Butterflyfishes are inactive at night, forage during the day and spawn at dusk. It is unlikely that nocturnal color changes are useful in conspecific interactions and are therefore believed to provide visual cues to potential predators. Nocturnal eyespots probably function to intimidate potential predators but could also remind them of unpalatability. The aggression release hypothesis (Lorenz 1962, 1966) to explain the brilliant coloration of chaetodontids is not supported because butterflyfish coloration changes and few species are territorial. The species recognition hypothesis (Zumpe 1965) is not supported by results of field experiments. The disruptive coloration hypothesis (Longley 1917) is rejected as a general explanation for poster coloration but does explain the prevalence of eyebars ofChaetodon spp. The aposematic hypothesis (Gosline 1965) is supported by morphology, behavior, a lack of predation and field observations. The possibility of Mullerian mimicry is suggested. It is concluded that the primary selective force behind chaetodontid coloration, particularly eyespots, has been predation and color patterns have evolved to minimize this threat.

Key words

ButterflyfishesChaetodonCommunicationColoration hypothesesAposematic colorationMullerian mimicry

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Stephen Neudecker
    • 1
  1. 1.Bayfront Conservancy TrustChula VistaU.S.A.