Skip to main content

Advertisement

Log in

Fuel homeostasis and locomotor behavior: role of leptin and melanocortin pathways

  • Review
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Background

While it is now accepted that genes and their products affect food intake, the concept that locomotor behavior or the propensity for physical activity is controlled by neuro hum oral regulators is frequently underappreciated. In mammals, complex interactions have developed to allow the cross-talk between fuel homeostasis and physical activity.

Aim

The aim of this review is to provide a synopsis of the influence of the leptin–melanocortin pathway, a well-studied pivotal player in body weight regulation, on locomotor behaviors.

Conclusions

In rodents, reductions in leptin levels that physiologically occur following acute food deprivation or a reduction of the fat mass consequent to prolonged caloric restrictions are associated with a decrease in total locomotor activity and simultaneous increase in food-anticipatory activity, a locomotor behavior which reflects a foraging attitude. These actions can be prevented by leptin administration and are at least partially mediated by the neurons of the melanocortin pathway. In humans, twin studies have attributed to genetic factors approximately 50 % of the variance of physical activity. An elevated number of the genes or loci which may affect physical activity are involved in body weight homeostasis. Polymorphisms of the melanocortin-4 and leptin receptors have repeatedly been associated with the level of physical activity. Unraveling the complexity of the regulation of locomotor behavior and the interconnections with the pathways involved in energy homeostasis may help explain the substantial individual variability in physical activities in humans and disentangle the harmful effects of sedentary lifestyle, which may be distinct from the detrimental effects of obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Farooqi S, O’Rahilly S (2006) Genetics of obesity in humans. Endocr Rev 27:710–718

    Article  CAS  PubMed  Google Scholar 

  2. Börjeson M (1976) Theaetiology of obesity in children. A study of 101 twin pairs. Acta Paediatr Scand 65:279–287

    Article  PubMed  Google Scholar 

  3. Stunkard AJ, Harris JR, Pedersen NL, McClearn GE (1990) The body-mass index of twins who have been reared apart. N Engl J Med 322:1483–1487

    Article  CAS  PubMed  Google Scholar 

  4. Bauman AE, Reis RS, Sallis JF, Wells JC, Loos RJ, Martin BW, Physical Activity Series Working Group (2012) Correlates of physical activity: why are some people physically active and others not? Lancet 380:258–271

    Article  PubMed  Google Scholar 

  5. Garland T Jr, Schutz H, Chappell MA, Keeney BK, Meek TH, Copes LE, Acosta W, Drenowatz C, Maciel RC, van Dijk G, Kotz CM, Eisenmann JC (2011) The biological control of voluntary exercise, spontaneous physical activity and daily energy expenditure in relation to obesity: human and rodent perspectives. J Exp Biol 214:206–229

    Article  PubMed Central  PubMed  Google Scholar 

  6. Levine JA, Eberhardt NL, Jensen MD (1999) Role of nonexercise activity thermogenesis in resistance to fat gain in humans. Science 283:212–214

    Article  CAS  PubMed  Google Scholar 

  7. Goodrick CL, Ingram DK, Reynolds MA, Freeman JR, Cider NL (1983) Effects of intermittent feeding upon growth, activity, and lifespan in rats allowed voluntary exercise. Exp Aging Res 9:203–209

    Article  CAS  PubMed  Google Scholar 

  8. Yamada Y, Colman RJ, Kemnitz JW, Baum ST, Anderson RM, Weindruch R, Schoeller DA (2013) Long-term calorie restriction decreases metabolic cost of movement and prevents decrease of physical activity during aging in rhesus monkeys. Exp Gerontol 48:1226–1235

    Article  PubMed  Google Scholar 

  9. Kotz CM (2006) Integration of feeding and spontaneous physical activity: role for orexin. Physiol Behav 88:294–301

    Article  CAS  PubMed  Google Scholar 

  10. Qi L, Cho YA (2008) Gene-environment interaction and obesity. Nutr Rev 66:684–694

    Article  PubMed Central  PubMed  Google Scholar 

  11. Swallow JG, Carter PA, Garland T Jr (1998) Artificial selection for increased wheel-running behavior in house mice. Behav Genet 28:227–237

    Article  CAS  PubMed  Google Scholar 

  12. Lightfoot JT, Turner MJ, Daves M, Vordermark A, Kleeberger SR (2004) Genetic influence on daily wheel running activity level. Physiol Genomics 19:270–276

    Article  CAS  PubMed  Google Scholar 

  13. Lambert MI, Van Zyl C, Jaunky R, Lambert EV, Noakes TD (1996) Tests of running performance do not predict subsequent spontaneous running in rats. Physiol Behav 60:171–176

    Article  CAS  PubMed  Google Scholar 

  14. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432

    Article  CAS  PubMed  Google Scholar 

  15. Friedman JM, Halaas JL (1998) Leptin and the regulation of body weight in mammals. Nature 395:763–770

    Article  CAS  PubMed  Google Scholar 

  16. Mayer J (1953) Decreased activity and energy balance in the hereditary obesity-diabetes syndrome of mice. Science 117:504–505

    Article  CAS  PubMed  Google Scholar 

  17. Pelleymounter MA, Cullen MJ, Baker MB, Hecht R, Winters D, Boone T, Collins F (1995) Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269:540–543

    Article  CAS  PubMed  Google Scholar 

  18. Ribeiro AC, Ceccarini G, Dupré C, Friedman JM, Pfaff DW, Mark AL (2011) Contrasting effects of leptin on food anticipatory and total locomotor activity. PLoS One 6(8):e23364

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Morton GJ, Kaiyala KJ, Fisher JD, Ogimoto K, Schwartz MW, Wisse BE (2011) Identification of a physiological role for leptin in the regulation of ambulatory activity and wheel running in mice. Am J Physiol Endocrinol Metab 300:E392–E401

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Montez JM, Soukas A, Asilmaz E, Fayzikhodjaeva G, Fantuzzi G, Friedman JM (2005) Acute leptin deficiency, leptin resistance, and the physiologic response to leptin withdrawal. Proc Natl Acad Sci USA 102:2537–2542

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Mistlberger RE (1994) Circadian food-anticipatory activity: formal models and physiological mechanisms. Neurosci Biobehav Rev 18:171–195

    Article  CAS  PubMed  Google Scholar 

  22. Hillebrand JJ, Kas MJ, van Elburg AA, Hoek HW, Adan RA (2008) Leptin’s effect on hyperactivity: potential downstream effector mechanisms. Physiol Behav 94:689–695

    Article  CAS  PubMed  Google Scholar 

  23. Exner C, Hebebrand J, Remschmidt H, Wewetzer C, Ziegler A, Herpertz S, Schweiger U, Blum WF, Preibisch G, Heldmaier G, Klingenspor M (2000) Leptin suppresses semi-starvation induced hyperactivity in rats: implications for anorexia nervosa. Mol Psychiatry 5:476–481

    Article  CAS  PubMed  Google Scholar 

  24. Hillebrand JJ, Koeners MP, de Rijke CE, Kas MJ, Adan RA (2005) Leptin treatment in activity-based anorexia. Biol Psychiatry 58:165–171

    Article  CAS  PubMed  Google Scholar 

  25. Cone RD (2005) Anatomy and regulation of the central melanocortin system. Nat Neurosci 8:571–578

    Article  CAS  PubMed  Google Scholar 

  26. Arch JR (2002) Lessons in obesity from transgenic animals. J Endocrinol Invest 25:867–875

    Article  CAS  PubMed  Google Scholar 

  27. Coppari R, Ichinose M, Lee CE, Pullen AE, Kenny CD, McGovern RA, Tang V, Liu SM, Ludwig T, Chua SC Jr, Lowell BB, Elmquist JK (2005) The hypothalamic arcuate nucleus: a key site for mediating leptin’s effects on glucose homeostasis and locomotor activity. Cell Metab 1:63–72

    Article  CAS  PubMed  Google Scholar 

  28. Huo L, Gamber K, Greeley S, Silva J, Huntoon N, Leng XH, Bjørbaek C (2009) Leptin-dependent control of glucose balance and locomotor activity by POMC neurons. Cell Metab 9:537–547

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Mesaros A, Koralov SB, Rother E, Wunderlich FT, Ernst MB, Barsh GS, Rajewsky K, Brüning JC (2008) Activation of Stat3 signaling in AgRP neurons promotes locomotor activity. Cell Metab 7:236–248

    Article  CAS  PubMed  Google Scholar 

  30. Bates SH, Dundon TA, Seifert M, Carlson M, Maratos-Flier E, Myers MG Jr (2004) LRb-STAT3 signaling is required for the neuroendocrine regulation of energy expenditure by leptin. Diabetes 53:3067–3073

    Article  CAS  PubMed  Google Scholar 

  31. Nergårdh R, Ammar A, Brodin U, Bergström J, Scheurink A, Södersten P (2007) Neuropeptide Y facilitates activity-based-anorexia. Psychoneuroendocrinology 32:493–502

    Article  PubMed  Google Scholar 

  32. Hommel JD, Trinko R, Sears RM, Georgescu D, Liu ZW, Gao XB, Thurmon JJ, Marinelli M, DiLeone RJ (2006) Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron 51:801–810

    Article  CAS  PubMed  Google Scholar 

  33. Haynes WG, Morgan DA, Walsh SA, Mark AL, Sivitz WI (1997) Receptor-mediated regional sympathetic nerve activation by leptin. J Clin Invest 100:270–278

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Ste Marie L, Miura GI, Marsh DJ, Yagaloff K, Palmiter RD (2000) A metabolic defect promotes obesity in mice lacking melanocortin-4 receptors. Proc Natl Acad Sci USA 97:12339–12344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Adage T, Scheurink AJ, de Boer SF, de Vries K, Konsman JP, Kuipers F, Adan RA, Baskin DG, Schwartz MW, van Dijk G (2001) Hypothalamic, metabolic, and behavioral responses to pharmacological inhibition of CNS melanocortin signaling in rats. J Neurosci 15:3639–3645

    Google Scholar 

  36. Butler AA, Kesterson RA, Khong K, Cullen MJ, Pelleymounter MA, Dekoning J, Baetscher M, Cone RD (2000) A unique metabolic syndrome causes obesity in the melanocortin-3 receptor-deficient mouse. Endocrinology 141:3518–3521

    Article  CAS  PubMed  Google Scholar 

  37. Chen AS, Marsh DJ, Trumbauer ME, Frazier EG, Guan XM, Yu H, Rosenblum CI, Vongs A, Feng Y, Cao L, Metzger JM, Strack AM, Camacho RE, Mellin TN, Nunes CN, Min W, Fisher J, Gopal-Truter S, MacIntyre DE, Chen HY, Van der Ploeg LH (2000) Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass. Nat Genet 26:97–102

    Article  CAS  PubMed  Google Scholar 

  38. Morgan MA, Schulkin J, Pfaff DW (2004) Estrogens and non-reproductive behaviors related to activity and fear. Neurosci Biobehav Rev 28:55–63

    Article  CAS  PubMed  Google Scholar 

  39. Girardet C, Mavrikaki M, Southern MR, Smith RG, Butler AA (2014) Assessing interactions between Ghsr and Mc3r reveals a role for AgRP in the expression of food anticipatory activity in male mice. Endocrinology 11:en20141497

    Google Scholar 

  40. Good DJ, Coyle CA, Fox DL (2008) Nhlh2: a basic helix-loop-helix transcription factor controlling physical activity. Exerc Sport Sci Rev 36:187–192

    Article  PubMed Central  PubMed  Google Scholar 

  41. Crujeiras AB, Díaz-Lagares A, Abete I, Goyenechea E, Amil M, Martínez JA, Casanueva FF (2014) Pre-treatment circulating leptin/ghrelin ratio as a non-invasive marker to identify patients likely to regain the lost weight after an energy restriction treatment. J Endocrinol Invest 37:119–126

    Article  CAS  PubMed  Google Scholar 

  42. Xu B, Goulding EH, Zang K, Cepoi D, Cone RD, Jones KR, Tecott LH, Reichardt LF (2003) Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor. Nat Neurosci 6:736–742

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Mainardi M, Scabia G, Vottari T, Santini F, Pinchera A, Maffei L, Pizzorusso T, Maffei M (2010) A sensitive period for environmental regulation of eating behavior and leptin sensitivity. Proc Natl Acad Sci USA 107:16673–16678

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Mainardi M, Pizzorusso T, Maffei M (2013) Environment, leptin sensitivity, and hypothalamic plasticity. Neural Plast. doi:10.1155/2013/438072

    PubMed Central  PubMed  Google Scholar 

  45. Levine JA, Lanningham-Foster LM, McCrady SK, Krizan AC, Olson LR, Kane PH, Jensen MD, Clark MM (2005) Interindividual variation in posture allocation: possible role in human obesity. Science 307:584–586

    Article  CAS  PubMed  Google Scholar 

  46. Levine JA, McCrady SK, Lanningham-Foster LM, Kane PH, Foster RC, Manohar CU (2008) The role of free-living daily walking in human weight gain and obesity. Diabetes 57:548–554

    Article  CAS  PubMed  Google Scholar 

  47. Schmidt SL, Harmon KA, Sharp TA, Kealey EH, Bessesen DH (2012) The effects of overfeeding on spontaneous physical activity in obesity prone and obesity resistant humans. Obesity 20:2186–2193 (Silver Spring)

    Article  PubMed Central  PubMed  Google Scholar 

  48. Torsello A, Brambilla F, Tamiazzo L, Bulgarelli I, Rapetti D, Bresciani E, Locatelli V (2007) Central dysregulations in the control of energy homeostasis and endocrine alterations in anorexia and bulimia nervosa. J Endocrinol Invest 30:962–976

    Article  CAS  PubMed  Google Scholar 

  49. Carlsson S, Andersson T, Lichtenstein P, Michaëlsson K, Ahlbom A (2006) Genetic effects on physical activity: results from the Swedish Twin Registry. Med Sci Sports Exerc 38:1396–1401

    Article  PubMed  Google Scholar 

  50. Stubbe JH, Boomsma DI, Vink JM, Cornes BK, Martin NG, Skytthe A, Kyvik KO, Rose RJ, Kujala UM, Kaprio J, Harris JR, Pedersen NL, Hunkin J, Spector TD, de Geus EJ (2006) Genetic influences on exercise participation in 37,051 twin pairs from seven countries. PLoS One 20(1):e22

    Article  Google Scholar 

  51. Joosen AM, Gielen M, Vlietinck R, Westerterp KR (2005) Genetic analysis of physical activity in twins. Am J Clin Nutr 82:1253–1259

    CAS  PubMed  Google Scholar 

  52. de Vilhena e Santos DM, Katzmarzyk PT, Seabra AF, Maia JA (2012) Genetics of physical activity and physical inactivity in humans. Behav Genet 42:559–578

    Article  PubMed  Google Scholar 

  53. Loos RJ, Rankinen T, Tremblay A, Pérusse L, Chagnon Y, Bouchard C (2005) Melanocortin-4 receptor gene and physical activity in the Québec Family Study. Int J Obes 29:420–428 (Lond)

    Article  CAS  Google Scholar 

  54. Cai G, Cole SA, Butte N, Bacino C, Diego V, Tan K, Göring HH, O’Rahilly S, Farooqi IS, Comuzzie AG (2006) A quantitative trait locus on chromosome 18q for physical activity and dietary intake in Hispanic children. Obesity 14:1596–1604 (Silver Spring)

    Article  CAS  PubMed  Google Scholar 

  55. Simonen RL, Rankinen T, Perusse L, Rice T, Rao DC, Chagnon Y, Bouchard C (2003) Genome-wide linkage scan for physical activity levels in the Quebec Family study. Med Sci Sports Exerc 35:1355–1359

    Article  PubMed  Google Scholar 

  56. Cole SA, Butte NF, Voruganti VS, Cai G, Haack K, Kent JW Jr, Blangero J, Comuzzie AG, McPherson JD, Gibbs RA (2010) Evidence that multiple genetic variants of MC4R play a functional role in the regulation of energy expenditure and appetite in Hispanic children. Am J Clin Nutr 91:191–199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Stefan N, Vozarova B, Del Parigi A, Ossowski V, Thompson DB, Hanson RL, Ravussin E, Tataranni PA (2002) The Gln223Arg polymorphism of the leptin receptor in Pima Indians: influence on energy expenditure, physical activity and lipid metabolism. Int J Obes Relat Metab Disord 26:1629–1632

    Article  CAS  PubMed  Google Scholar 

  58. De Moor MH, Liu YJ, Boomsma DI, Li J, Hamilton JJ, Hottenga JJ, Levy S, Liu XG, Pei YF, Posthuma D, Recker RR, Sullivan PF, Wang L, Willemsen G, Yan H, De Geus EJ, Deng HW (2009) Genome-wide association study of exercise behavior in Dutch and American adults. Med Sci Sports Exerc 41:1887–1895

    Article  PubMed Central  PubMed  Google Scholar 

  59. Holtkamp K, Herpertz-Dahlmann B, Mika C, Heer M, Heussen N, Fichter M, Herpertz S, Senf W, Blum WF, Schweiger U, Warnke A, Ballauff A, Remschmidt H, Hebebrand J (2003) Elevated physical activity and low leptin levels co-occur in patients with anorexia nervosa. J Clin Endocrinol Metab 88:5169–5174

    Article  CAS  PubMed  Google Scholar 

  60. Zaccaria M, Ermolao A, Brugin E, Bergamin M (2013) Plasma leptin and energy expenditure during prolonged, moderate intensity, treadmill exercise. J Endocrinol Invest 36:396–401

    CAS  PubMed  Google Scholar 

  61. Plinta R, Olszanecka-Glinianowicz M, Drosdzol-Cop A, Chudek J, Skrzypulec-Plinta V (2012) The effect of three-month pre-season preparatory period and short-term exercise on plasma leptin, adiponectin, visfatin, and ghrelin levels in young female handball and basketball players. J Endocrinol Invest 35:595–601

    CAS  PubMed  Google Scholar 

  62. Simonen RL, Rankinen T, Pérusse L, Leon AS, Skinner JS, Wilmore JH, Rao DC, Bouchard C (2003) A dopamine D2 receptor gene polymorphism and physical activity in two family studies. Physiol Behav 78:751–757

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Prof. Allyn Mark for his helpful comments and critical reading of the manuscript.

Conflict of interest

The authors declare that there are no potential conflicts of interest related to this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ceccarini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ceccarini, G., Maffei, M., Vitti, P. et al. Fuel homeostasis and locomotor behavior: role of leptin and melanocortin pathways. J Endocrinol Invest 38, 125–131 (2015). https://doi.org/10.1007/s40618-014-0225-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-014-0225-z

Keywords

Navigation