Skip to main content
Log in

Withdrawal Symptoms and Rebound Syndromes Associated with Switching and Discontinuing Atypical Antipsychotics: Theoretical Background and Practical Recommendations

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

With the widespread use of atypical or second-generation antipsychotics, switching treatment has become current practice and more complicated, as the pharmacological profiles of these agents differ substantially despite their similarity in being ‘atypical’. All share the ability to block dopamine D2 receptors, and most of them also block serotonin 5-HT2A receptors. Apart from these common features, some atypical antipsychotics are also able to block or stimulate other dopamine or serotonin receptors, as well as histaminergic, muscarinergic or adrenergic receptors. As a result of the varying receptor affinities, in switching or discontinuing compounds several possible pitfalls have to be considered, including the occurrence of withdrawal and rebound syndromes. This article reviews the pharmacological background of functional blockade or stimulation of receptors of interest in regard to atypical antipsychotics and the implicated potential withdrawal and rebound phenomena. A MEDLINE search was carried out to identify information on withdrawal or rebound syndromes occurring after discontinuation of atypical antipsychotics. Using the resulting literature, we first discuss the theoretical background to the functional consequences of atypical antipsychotic-induced blockade or stimulation of neurotransmitter receptors and, secondly, we highlight the clinical consequences of this. We then review the available clinical literature on switching between atypical antipsychotics, with respect to the occurrence of withdrawal or rebound symptoms. Finally, we offer practical recommendations based on the reviewed findings. The systematic evaluation of withdrawal or rebound phenomena using randomized controlled trials is still understudied. Knowledge of pharmacological receptor-binding profiles may help clinicians in choosing adequate switching or discontinuation strategies for each agent. Results from large switching trials indicate that switching atypical antipsychotics can be performed in a safe manner. Treatment-emergent adverse events during or after switching are not always considered to be, at least in part, associated with the pre-switch antipsychotic. Further studies are needed to substantiate the evidence gained so far on different switching strategies. The use of concomitant medication, e.g., benzodiazepines or anticholinergic drugs, may help to minimize symptoms arising from the discontinuation or switching of antipsychotic treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chouinard G, Chouinard VA. Atypical antipsychotics: CATIE study, drug-induced movement disorder and resulting iatrogenic psychiatric-like symptoms, supersensitivity rebound psychosis and withdrawal discontinuation syndromes. Psychother Psychosom. 2008;77(2):69–77.

    Article  PubMed  Google Scholar 

  2. Chouinard G, Bradwejn J, Annable L, et al. Withdrawal symptoms after long-term treatment with low-potency neuroleptics. J Clin Psychiatry. 1984;45(12):500–2.

    PubMed  CAS  Google Scholar 

  3. Chouinard G, Jones BD, Annable L. Neuroleptic-induced supersensitivity psychosis. Am J Psychiatry. 1978;135(11):1409–10.

    PubMed  CAS  Google Scholar 

  4. Chouinard G, Jones BD. Neuroleptic-induced supersensitivity psychosis: clinical and pharmacologic characteristics. Am J Psychiatry. 1980;137(1):16–21.

    PubMed  CAS  Google Scholar 

  5. Chouinard G. Severe cases of neuroleptic-induced supersensitivity psychosis: diagnostic criteria for the disorder and its treatment. Schizophr Res. 1991;5(1):21–33.

    Article  PubMed  CAS  Google Scholar 

  6. Goudie AJ, Smith JA, Robertson A, et al. Clozapine as a drug of dependence. Psychopharmacology (Berl). 1999;142(4):369–74.

    Article  CAS  Google Scholar 

  7. Borison RL. Changing antipsychotic medication: guidelines on the transition to treatment with risperidone: the Consensus Study Group on Risperidone Dosing. Clin Ther. 1996;18(4):592–607.

    Article  PubMed  CAS  Google Scholar 

  8. Buckley PF. Receptor-binding profiles of antipsychotics: clinical strategies when switching between agents. J Clin Psychiatry. 2007;68(Suppl. 6):5–9.

    PubMed  CAS  Google Scholar 

  9. Correll CU. From receptor pharmacology to improved outcomes: individualising the selection, dosing, and switching of antipsychotics. Eur Psychiatry. 2010;25(Suppl. 2):S12–21.

    Article  PubMed  Google Scholar 

  10. Lambert TJ. Switching antipsychotic therapy: what to expect and clinical strategies for improving therapeutic outcomes. J Clin Psychiatry. 2007;68(Suppl. 6):10–3.

    PubMed  CAS  Google Scholar 

  11. Luchins DJ, Freed WJ, Wyatt RJ. The role of cholinergic supersensitivity in the medical symptoms associated with withdrawal of antipsychotic drugs. Am J Psychiatry. 1980;137(11):1395–8.

    PubMed  CAS  Google Scholar 

  12. Moncrieff J. Does antipsychotic withdrawal provoke psychosis? Review of the literature on rapid onset psychosis (supersensitivity psychosis) and withdrawal-related relapse. Acta Psychiatr Scand. 2006;114(1):3–13.

    Article  PubMed  CAS  Google Scholar 

  13. Beaulieu JM, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev. 2011;63(1):182–217.

    Article  PubMed  CAS  Google Scholar 

  14. Vallone D, Picetti R, Borrelli E. Structure and function of dopamine receptors. Neurosci Biobehav Rev. 2000;24(1):125–32.

    Article  PubMed  CAS  Google Scholar 

  15. Andersen PH, Gingrich JA, Bates MD, et al. Dopamine receptor subtypes: beyond the D1/D2 classification. Trends Pharmacol Sci. 1990;11(6):231–6.

    Article  PubMed  CAS  Google Scholar 

  16. Anden NE, Carlsson A, Dahlstroem A, et al. Demonstration and mapping out of nigro-neostriatal dopamine neurons. Life Sci. 1964;3:523–30.

    Article  PubMed  CAS  Google Scholar 

  17. Dahlstroem A, Fuxe K. Evidence for the existence of monoamine neurons in the central nervous system: II. Experimentally induced changes in the intraneuronal amine levels of bulbospinal neuron systems. Acta Physiol Scand Suppl. 1965;Suppl. 247:1–36.

    Google Scholar 

  18. Glazer WM. Extrapyramidal side effects, tardive dyskinesia, and the concept of atypicality. J Clin Psychiatry. 2000;61(Suppl. 3):16–21.

    PubMed  CAS  Google Scholar 

  19. Reynolds GP. Antipsychotic drug mechanisms and neurotransmitter systems in schizophrenia. Acta Psychiatr Scand Suppl. 1994;380:36–40.

    Article  PubMed  CAS  Google Scholar 

  20. Jauss M, Krack P, Franz M, et al. Imaging of dopamine receptors with [123I]iodobenzamide single-photon emission-computed tomography in neuroleptic malignant syndrome. Mov Disord. 1996;11(6):726–8.

    Article  PubMed  CAS  Google Scholar 

  21. Seeman P, Weinshenker D, Quirion R, et al. Dopamine supersensitivity correlates with D2high states, implying many paths to psychosis. Proc Natl Acad Sci USA. 2005;102(9):3513–8.

    Article  PubMed  CAS  Google Scholar 

  22. Akhondzadeh S, Malek-Hosseini M, Ghoreishi A, et al. Effect of ritanserin, a 5HT2A/2C antagonist, on negative symptoms of schizophrenia: a double-blind randomized placebo-controlled study. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(8):1879–83.

    Article  PubMed  CAS  Google Scholar 

  23. Baumgarten HG, Grozdanovic Z. Psychopharmacology of central serotonergic systems. Pharmacopsychiatry. 1995;28(Suppl. 2):73–9.

    Article  PubMed  Google Scholar 

  24. Roth BL. Multiple serotonin receptors: clinical and experimental aspects. Ann Clin Psychiatry. 1994;6(2):67–78.

    Article  PubMed  CAS  Google Scholar 

  25. MacDonald GJ, Bartolome JM. A decade of progress in the discovery and development of ‘atypical’ antipsychotics. Prog Med Chem. 2010;49:37–80.

    Article  PubMed  CAS  Google Scholar 

  26. Meltzer HY, Massey BW. The role of serotonin receptors in the action of atypical antipsychotic drugs. Curr Opin Pharmacol. 2011;11(1):59–67.

    Article  PubMed  CAS  Google Scholar 

  27. Meltzer HY, Horiguchi M, Massey BW. The role of serotonin in the NMDA receptor antagonist models of psychosis and cognitive impairment. Psychopharmacology (Berl). 2011;213(2–3):289–305.

    Article  CAS  Google Scholar 

  28. Schmidt CJ, Sorensen SM, Kehne JH, et al. The role of 5-HT2A receptors in antipsychotic activity. Life Sci. 1995;56(25):2209–22.

    Article  PubMed  CAS  Google Scholar 

  29. Kroeze WK, Hufeisen SJ, Popadak BA, et al. H1-histamine receptor affinity predicts short-term weight gain for typical and atypical antipsychotic drugs. Neuropsychopharmacology. 2003;28(3):519–26.

    Article  PubMed  CAS  Google Scholar 

  30. Freedman R, Adams CE, Leonard S. The alpha7-nicotinic acetylcholine receptor and the pathology of hippocampal interneurons in schizophrenia. J Chem Neuroanat. 2000;20(3–4):299–306.

    Article  PubMed  CAS  Google Scholar 

  31. Olincy A, Harris JG, Johnson LL, et al. Proof-of-concept trial of an alpha7 nicotinic agonist in schizophrenia. Arch Gen Psychiatry. 2006;63(6):630–8.

    Article  PubMed  CAS  Google Scholar 

  32. Langmead CJ, Watson J, Reavill C. Muscarinic acetylcholine receptors as CNS drug targets. Pharmacol Ther. 2008;117(2):232–43.

    Article  PubMed  CAS  Google Scholar 

  33. Raedler TJ, Bymaster FP, Tandon R, et al. Towards a muscarinic hypothesis of schizophrenia. Mol Psychiatry. 2007;12(3):232–46.

    PubMed  CAS  Google Scholar 

  34. Scarr E, Dean B. Muscarinic receptors: do they have a role in the pathology and treatment of schizophrenia? J Neurochem 2008 Dec;107(5):1188-95.

    Google Scholar 

  35. Fisher A, Heldman E, Gurwitz D, et al. M1 agonists for the treatment of Alzheimer’s disease: novel properties and clinical update. Ann N Y Acad Sci. 1996;777:189–96.

    Article  PubMed  CAS  Google Scholar 

  36. Iversen SD. Behavioural evaluation of cholinergic drugs. Life Sci. 1997;60(13–14):1145–52.

    Article  PubMed  CAS  Google Scholar 

  37. Bymaster FP, Felder CC, Tzavara E, et al. Muscarinic mechanisms of antipsychotic atypicality. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27(7):1125–43.

    Article  PubMed  CAS  Google Scholar 

  38. Hein L. Adrenoceptors and signal transduction in neurons. Cell Tissue Res. 2006;326(2):541–51.

    Article  PubMed  CAS  Google Scholar 

  39. Marcus MM, Jardemark KE, Wadenberg ML, et al. Combined alpha2 and D2/3 receptor blockade enhances cortical glutamatergic transmission and reverses cognitive impairment in the rat. Int J Neuropsychopharmacol. 2005;8(3):315–27.

    Article  PubMed  CAS  Google Scholar 

  40. Svensson TH. Alpha-adrenoceptor modulation hypothesis of antipsychotic atypicality. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27(7):1145–58.

    Article  PubMed  CAS  Google Scholar 

  41. Ungerstedt U. Postsynaptic supersensitivity after 6-hydroxy-dopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiol Scand Suppl. 1971;367:69–93.

    PubMed  CAS  Google Scholar 

  42. Muller P, Seeman P. Dopaminergic supersensitivity after neuroleptics: time-course and specificity. Psychopharmacology (Berl). 1978;60(1):1–11.

    Article  CAS  Google Scholar 

  43. Ekblom B, Eriksson K, Lindstrom LH. Supersensitivity psychosis in schizophrenic patients after sudden clozapine withdrawal. Psychopharmacology (Berl). 1984;83(3):293–4.

    Article  CAS  Google Scholar 

  44. Kapur S, Seeman P. Does fast dissociation from the dopamine d(2) receptor explain the action of atypical antipsychotics?: A new hypothesis. Am J Psychiatry. 2001;158(3):360–9.

    Article  PubMed  CAS  Google Scholar 

  45. Seeman P, Tallerico T. Rapid release of antipsychotic drugs from dopamine D2 receptors: an explanation for low receptor occupancy and early clinical relapse upon withdrawal of clozapine or quetiapine. Am J Psychiatry. 1999;156(6):876–84.

    PubMed  CAS  Google Scholar 

  46. Fallon P, Dursun SM. A naturalistic controlled study of relapsing schizophrenic patients with tardive dyskinesia and supersensitivity psychosis. J Psychopharmacol. 2011;25(6):755–62.

    Article  PubMed  Google Scholar 

  47. Davis KL, Rosenberg GS. Is there a limbic system equivalent of tardive dyskinesia? Biol Psychiatry. 1979;14(4):699–703.

    PubMed  CAS  Google Scholar 

  48. Margolese HC, Chouinard G, Beauclair L, et al. Therapeutic tolerance and rebound psychosis during quetiapine maintenance monotherapy in patients with schizophrenia and schizoaffective disorder. J Clin Psychopharmacol. 2002;22(4):347–52.

    Article  PubMed  CAS  Google Scholar 

  49. Perenyi A, Kuncz E, Bagdy G. Early relapse after sudden withdrawal or dose reduction of clozapine. Psychopharmacology (Berl). 1985;86(1–2):244.

    Article  CAS  Google Scholar 

  50. Alphs LD, Lee HS. Comparison of withdrawal of typical and atypical antipsychotic drugs: a case study. J Clin Psychiatry. 1991;52(8):346–8.

    PubMed  CAS  Google Scholar 

  51. Parsa MA, al-Lahham YH, Ramirez LF, et al. Prolonged psychotic relapse after abrupt clozapine withdrawal. J Clin Psychopharmacol. 1993;13(2):154–5.

    Article  PubMed  CAS  Google Scholar 

  52. Meltzer HY. Clozapine withdrawal: serotonergic or dopaminergic mechanisms? Arch Gen Psychiatry. 1997;54(8):760–3.

    Article  PubMed  CAS  Google Scholar 

  53. Meltzer HY, Lee MA, Ranjan R, et al. Relapse following clozapine withdrawal: effect of neuroleptic drugs and cyproheptadine. Psychopharmacology (Berl). 1996;124(1–2):176–87.

    Article  CAS  Google Scholar 

  54. Llorca PM, Penault F, Lancon C, et al. The concept of supersensitivity psychosis: the particular case of clozapine. Encephale. 1999;25(6):638–44.

    PubMed  CAS  Google Scholar 

  55. Wadekar M, Syed S. Clozapine-withdrawal catatonia. Psychosomatics. 2010;51(4):355.

    PubMed  Google Scholar 

  56. Ahmed S, Chengappa KN, Naidu VR, et al. Clozapine withdrawal-emergent dystonias and dyskinesias: a case series. J Clin Psychiatry. 1998;59(9):472–7.

    Article  PubMed  CAS  Google Scholar 

  57. Songer DA, Schulte HM. Withdrawal dyskinesia after abrupt cessation of clozapine and benztropine. J Clin Psychiatry. 1996;57(1):40.

    PubMed  CAS  Google Scholar 

  58. Radford JM, Brown TM, Borison RL. Unexpected dystonia while changing from clozapine to risperidone. J Clin Psychopharmacol. 1995;15(3):225–6.

    Article  PubMed  CAS  Google Scholar 

  59. Llorca PM, Vaiva G, Lancon C. Supersensitivity psychosis in patients with schizophrenia after sudden olanzapine withdrawal. Can J Psychiatry. 2001;46(1):87–8.

    PubMed  CAS  Google Scholar 

  60. Baldessarini RJ, Gardner DM, Garver DL. Conversions from clozapine to other antipsychotic drugs. Arch Gen Psychiatry. 1995;52(12):1071–2.

    Article  PubMed  CAS  Google Scholar 

  61. Lu ML, Pan JJ, Teng HW, et al. Metoclopramide-induced supersensitivity psychosis. Ann Pharmacother. 2002;36(9):1387–90.

    Article  PubMed  Google Scholar 

  62. Turrone P, Remington G, Kapur S, et al. Differential effects of within-day continuous vs. transient dopamine D2 receptor occupancy in the development of vacuous chewing movements (VCMs) in rats. Neuropsychopharmacology. 2003;28(8):1433–9.

    Article  PubMed  CAS  Google Scholar 

  63. Turrone P, Remington G, Kapur S, et al. Continuous but not intermittent olanzapine infusion induces vacuous chewing movements in rats. Biol Psychiatry. 2005;57(4):406–11.

    Article  PubMed  CAS  Google Scholar 

  64. Goudie AJ, Cole JC, Sumnall HR. Olanzapine withdrawal/discontinuation-induced hyperthermia in rats. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31(7):1500–3.

    Article  PubMed  CAS  Google Scholar 

  65. Buckley PF, Correll CU. Strategies for dosing and switching antipsychotics for optimal clinical management. J Clin Psychiatry. 2008;69(Suppl. 1):4–17.

    Google Scholar 

  66. Buckley PF. Introduction: the art and science of switching antipsychotic medications. J Clin Psychiatry. 2007;68(Suppl. 6):4.

    PubMed  Google Scholar 

  67. Viguera AC, Baldessarini RJ, Hegarty JD, et al. Clinical risk following abrupt and gradual withdrawal of maintenance neuroleptic treatment. Arch Gen Psychiatry. 1997;54(1):49–55.

    Article  PubMed  CAS  Google Scholar 

  68. Svensson TH, Strombom U. Discontinuation of chronic clonidine treatment: evidence for facilitated brain noradrenergic neurotransmission. Naunyn Schmiedebergs Arch Pharmacol. 1977;299(1):83–7.

    Article  PubMed  CAS  Google Scholar 

  69. Thoolen MJ, Hendriks JC, Timmermans PB, et al. Precipitation by yohimbine of the withdrawal syndromes of clonidine, guanfacine, and methyldopa in the spontaneously hypertensive rat. J Cardiovasc Pharmacol. 1983;5(2):224–8.

    Article  PubMed  CAS  Google Scholar 

  70. Correll CU. Real-life switching strategies with second-generation antipsychotics. J Clin Psychiatry. 2006;67(1):160–1.

    Article  PubMed  Google Scholar 

  71. Edlinger M, Baumgartner S, Eltanaihi-Furtmuller N, et al. Switching between second-generation antipsychotics: why and how? CNS Drugs. 2005;19(1):27–42.

    Article  PubMed  CAS  Google Scholar 

  72. Lin CC, Bai YM, Wang YC, et al. Improved body weight and metabolic outcomes in overweight or obese psychiatric patients switched to amisulpride from other atypical antipsychotics. J Clin Psychopharmacol. 2009;29(6):529–36.

    Article  PubMed  Google Scholar 

  73. Linden M, Scheel T, Eich FX. Improvement of patient compliance after switching from conventional neuroleptics to the atypical neuroleptic amisulpride. J Psychopharmacol. 2006;20(6):815–23.

    Article  PubMed  CAS  Google Scholar 

  74. Byerly MJ, Marcus RN, Tran QV, et al. Effects of aripiprazole on prolactin levels in subjects with schizophrenia during cross-titration with risperidone or olanzapine: analysis of a randomized, open-label study. Schizophr Res. 2009;107(2–3):218–22.

    Article  PubMed  Google Scholar 

  75. Ganguli R, Brar JS, Garbut R, et al. Changes in weight and other metabolic indicators in persons with schizophrenia following a switch to aripiprazole. Clin Schizophr Relat Psychoses. 2011;5(2):75–9.

    Article  PubMed  Google Scholar 

  76. Chen CY, Lin TY, Wang CC, et al. Improvement of serum prolactin and sexual function after switching to aripiprazole from risperidone in schizophrenia: a case series. Psychiatry Clin Neurosci. 2011;65(1):95–7.

    Article  PubMed  CAS  Google Scholar 

  77. Kim CY, Chung S, Lee JN, et al. A 12-week, naturalistic switch study of the efficacy and tolerability of aripiprazole in stable outpatients with schizophrenia or schizoaffective disorder. Int Clin Psychopharmacol. 2009;24(4):181–8.

    Article  PubMed  Google Scholar 

  78. Kim SH, Ivanova O, Abbasi FA, et al. Metabolic impact of switching antipsychotic therapy to aripiprazole after weight gain: a pilot study. J Clin Psychopharmacol. 2007;27(4):365–8.

    Article  PubMed  CAS  Google Scholar 

  79. Lee BH, Kim YK, Park SH. Using aripiprazole to resolve antipsychotic-induced symptomatic hyperprolactinemia: a pilot study. Prog Neuropsychopharmacol Biol Psychiatry. 2006;30(4):714–7.

    Article  PubMed  CAS  Google Scholar 

  80. Lin HC, Chong MY, Lee Y, et al. Switching of antipsychotics to aripiprazole in the treatment of schizophrenia. Chang Gung Med J. 2009;32(4):409–16.

    PubMed  Google Scholar 

  81. Lu ML, Shen WW, Chen CH. Time course of the changes in antipsychotic-induced hyperprolactinemia following the switch to aripiprazole. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(8):1978–81.

    Article  PubMed  CAS  Google Scholar 

  82. Mir A, Shivakumar K, Williamson RJ, et al. Change in sexual dysfunction with aripiprazole: a switching or add-on study. J Psychopharmacol. 2008;22(3):244–53.

    Article  PubMed  CAS  Google Scholar 

  83. Pae CU, Serretti A, Chiesa A, et al. Immediate versus gradual suspension of previous treatments during switch to aripiprazole: results of a randomized, open label study. Eur Neuropsychopharmacol. 2009;19(8):562–70.

    Article  PubMed  CAS  Google Scholar 

  84. Pae CU, Chiesa A, Mandelli L, et al. Predictors of early worsening after switch to aripiprazole: a randomized, controlled, open-label study. Clin Drug Investig. 2010;30(3):187–93.

    Article  PubMed  CAS  Google Scholar 

  85. Ryckmans V, Kahn JP, Modell S, et al. Switching to aripiprazole in outpatients with schizophrenia experiencing insufficient efficacy and/or safety/tolerability issues with risperidone: a randomized, multicentre, open-label study. Pharmacopsychiatry. 2009;42(3):114–21.

    Article  PubMed  CAS  Google Scholar 

  86. Sarin A, Nagpal J, Bohra NK, et al. Open labeled, randomized, switch-over study of two fixed doses (10/15 mg) of aripiprazole: to evaluate its safety and efficacy in the treatment of Indian patients of schizophrenia. Indian J Psychiatry. 2004;46(1):64–71.

    PubMed  CAS  Google Scholar 

  87. Spurling RD, Lamberti JS, Olsen D, et al. Changes in metabolic parameters with switching to aripiprazole from another second-generation antipsychotic: a retrospective chart review. J Clin Psychiatry. 2007;68(3):406–9.

    Article  PubMed  CAS  Google Scholar 

  88. Stroup TS, McEvoy JP, Ring KD, et al. A randomized trial examining the effectiveness of switching from olanzapine, quetiapine, or risperidone to aripiprazole to reduce metabolic risk: comparison of antipsychotics for metabolic problems (CAMP). Am J Psychiatry. 2011;168(9):947–56.

    Article  PubMed  Google Scholar 

  89. Takeuchi H, Suzuki T, Uchida H, et al. A randomized, open-label comparison of 2 switching strategies to aripiprazole treatment in patients with schizophrenia: add-on, wait, and tapering of previous antipsychotics versus add-on and simultaneous tapering. J Clin Psychopharmacol. 2008;28(5):540–3.

    Article  PubMed  CAS  Google Scholar 

  90. Kim SW, Shin IS, Kim JM, et al. Effects of switching to long-acting injectable risperidone from oral atypical antipsychotics on cognitive function in patients with schizophrenia. Hum Psychopharmacol. 2009;24(7):565–73.

    Article  PubMed  CAS  Google Scholar 

  91. Hsu WY, Lee CI, Chiu NY, et al. Aripiprazole in treatment-refractory schizophrenia. J Psychiatr Pract. 2009;15(3):221–6.

    Article  PubMed  Google Scholar 

  92. Hughes D, Morcos M. Use of aripiprazole in treatment resistant schizophrenia. J Psychopharmacol. 2008;22(8):927–8.

    Article  PubMed  CAS  Google Scholar 

  93. Kuloglu M, Ekinci O, Albayrak Y, et al. Benefits of switching women schizophrenic patients to aripiprazole: a case study and brief review of the literature. Arch Womens Ment Health. 2010;13(5):443–7.

    Article  PubMed  Google Scholar 

  94. Kim SW, Shin IS, Kim JM, et al. Effectiveness of switching to aripiprazole from atypical antipsychotics in patients with schizophrenia. Clin Neuropharmacol. 2009;32(5):243–9.

    Article  PubMed  CAS  Google Scholar 

  95. Mago R. Proposed strategies for successful clinical management with aripiprazole. Expert Opin Pharmacother. 2008;9(8):1279–90.

    Article  PubMed  CAS  Google Scholar 

  96. Burris KD, Molski TF, Xu C, et al. Aripiprazole, a novel antipsychotic, is a high-affinity partial agonist at human dopamine D2 receptors. J Pharmacol Exp Ther. 2002;302(1):381–9.

    Article  PubMed  CAS  Google Scholar 

  97. Schering-Plough Corporation. Saphris (Asenapine) sublingual tablets: US prescribing information. http://www.spfiles.com/pisaphrisv1.pdf (Accessed 2 Feb 2012).

  98. Kane JM, Mackle M, Snow-Adami L, et al. A randomized placebo-controlled trial of asenapine for the prevention of relapse of schizophrenia after long-term treatment. J Clin Psychiatry. 2011;72(3):349–55.

    Article  PubMed  Google Scholar 

  99. Schoemaker J, Naber D, Vrijland P, et al. Long-term assessment of asenapine vs. olanzapine in patients with schizophrenia or schizoaffective disorder. Pharmacopsychiatry. 2010;43(4):138–46.

    Article  PubMed  CAS  Google Scholar 

  100. Buchanan RW, Panagides J, Zhao J, et al. Asenapine versus olanzapine in people with persistent negative symptoms of schizophrenia. J Clin Psychopharmacol. 2012;32(1):36–45.

    Article  PubMed  CAS  Google Scholar 

  101. Kane JM, Cohen M, Zhao J, et al. Efficacy and safety of asenapine in a placebo- and haloperidol-controlled trial in patients with acute exacerbation of schizophrenia. J Clin Psychopharmacol. 2010;30(2):106–15.

    Article  PubMed  CAS  Google Scholar 

  102. Potkin SG, Cohen M, Panagides J. Efficacy and tolerability of asenapine in acute schizophrenia: a placebo- and risperidone-controlled trial. J Clin Psychiatry. 2007;68(10):1492–500.

    Article  PubMed  CAS  Google Scholar 

  103. Dubovsky SL, Frobose C, Phiri P, et al. Short-term safety and pharmacokinetic profile of asenapine in older patients with psychosis. Int J Geriatr Psychiatry. 2012;27(5):472–82.

    Article  PubMed  Google Scholar 

  104. Citrome L. Asenapine for schizophrenia and bipolar disorder: a review of the efficacy and safety profile for this newly approved sublingually absorbed second-generation antipsychotic. Int J Clin Pract. 2009;63(12):1762–84.

    Article  PubMed  CAS  Google Scholar 

  105. Kane JM, Lauriello J, Laska E, et al. Long-term efficacy and safety of iloperidone: results from 3 clinical trials for the treatment of schizophrenia. J Clin Psychopharmacol. 2008;28 Suppl. 1(2):S29–35.

    Article  CAS  Google Scholar 

  106. Potkin SG, Litman RE, Torres R, et al. Efficacy of iloperidone in the treatment of schizophrenia: initial phase 3 studies. J Clin Psychopharmacol. 2008;28 Suppl. 1(2):S4–11.

    Article  CAS  Google Scholar 

  107. Cutler AJ, Kalali AH, Weiden PJ, et al. Four-week, double-blind, placebo- and ziprasidone-controlled trial of iloperidone in patients with acute exacerbations of schizophrenia. J Clin Psychopharmacol. 2008;28(2 Suppl. 1):S20–8.

    Article  PubMed  CAS  Google Scholar 

  108. Vanda Pharmaceuticals. Fanapt (iloperidone) tablets. http://www.pharma.us.novartis.com/product/pi/pdf/fanapt.pdf (Accessed 6 Feb 2012).

  109. Weiden PJ, Cutler AJ, Polymeropoulos MH, et al. Safety profile of iloperidone: a pooled analysis of 6-week acute-phase pivotal trials. J Clin Psychopharmacol. 2008;28 Suppl. 1(2):S12–9.

    Article  CAS  Google Scholar 

  110. Kalkman HO, Subramanian N, Hoyer D. Extended radioligand binding profile of iloperidone: a broad spectrum dopamine/serotonin/norepinephrine receptor antagonist for the management of psychotic disorders. Neuropsychopharmacology. 2001;25(6):904–14.

    Article  PubMed  CAS  Google Scholar 

  111. Citrome L. Lurasidone for schizophrenia: a review of the efficacy and safety profile for this newly approved second-generation antipsychotic. Int J Clin Pract. 2011;65(2):189–210.

    Article  PubMed  CAS  Google Scholar 

  112. Sunovion. Latuda (lurasidone HCl) tablets: prescribing information. Available from URL: http://www.latuda.com/LatudaPrescribingInformation.pdf (Accessed 9 Feb 2012).

  113. Nakamura M, Ogasa M, Guarino J, et al. Lurasidone in the treatment of acute schizophrenia: a double-blind, placebo-controlled trial. J Clin Psychiatry. 2009;70(6):829–36.

    Article  PubMed  CAS  Google Scholar 

  114. Cucchiaro J, Potkin SG, Ogasa M, et al. A double-blind comparison of the safety and efficacy of lurasidone and ziprasidone in clinically stable outpatients with schizophrenia or schizoaffective disorder. Schizophr Bull. 2009;35(Suppl. 1):342–3.

    Google Scholar 

  115. Potkin SG, Ogasa M, Cucchiaro J, Loebel A. Double-blind comparison of the safety and efficacy of lurasidone and ziprasidone in clinically stable outpatients with schizophrenia or schizoaffective disorder. Schizophr Res. 2011;132(2–3):101–7.

    Article  PubMed  Google Scholar 

  116. Meltzer HY, Cucchiaro J, Silva R, et al. Lurasidone in the treatment of schizophrenia: a randomized, double-blind, placebo- and olanzapine-controlled study. Am J Psychiatry. 2011;168(9):957–67.

    Article  PubMed  Google Scholar 

  117. Costa e Silva JA, Alvarez N, Mazzotti G, et al. Olanzapine as alternative therapy for patients with haloperidol-induced extrapyramidal symptoms: results of a multicenter, collaborative trial in Latin America. J Clin Psychopharmacol. 2001;21(4):375–81.

    Article  PubMed  Google Scholar 

  118. Dossenbach MR, Kratky P, Schneidman M, et al. Evidence for the effectiveness of olanzapine among patients nonresponsive and/or intolerant to risperidone. J Clin Psychiatry. 2001;62(Suppl 2):28–34.

    PubMed  CAS  Google Scholar 

  119. Dossenbach MRK, Beuzen JN, Avnon M, et al. The effectiveness of olanzapine in treatment-refractory schizophrenia when patients are nonresponsive to or unable to tolerate clozapine. Clin Ther. 2000;22(9):1021–34.

    Article  PubMed  CAS  Google Scholar 

  120. Faries DE, Ascher-Svanum H, Nyhuis AW, Kinon BJ. Switching from risperidone to olanzapine in a one-year, randomized, open-label effectiveness study of schizophrenia. Curr Med Res Opin. 2008;24(5):1399–405.

    Article  PubMed  CAS  Google Scholar 

  121. Godleski LS, Goldsmith LJ, Vieweg WV, Zettwoch NC, Stikovac DM, Lewis SJ. Switching from depot antipsychotic drugs to olanzapine in patients with chronic schizophrenia. J Clin Psychiatry. 2003;64(2):119–22.

    Article  PubMed  CAS  Google Scholar 

  122. Henderson DC, Nasrallah RA, Goff DC. Switching from clozapine to olanzapine in treatment-refractory schizophrenia: safety, clinical efficacy, and predictors of response. J Clin Psychiatry. 1998;59(11):585–8.

    Article  PubMed  CAS  Google Scholar 

  123. Lee CT, Conde BJ, Mazlan M, et al. Switching to olanzapine from previous antipsychotics: a regional collaborative multicenter trial assessing 2 switching techniques in Asia Pacific. J Clin Psychiatry. 2002;63(7):569–76.

    Article  PubMed  CAS  Google Scholar 

  124. Lindenmayer JP, Czobor P, Volavka J, et al. Olanzapine in refractory schizophrenia after failure of typical or atypical antipsychotic treatment: an open-label switch study. J Clin Psychiatry. 2002;63(10):931–5.

    Article  PubMed  CAS  Google Scholar 

  125. Kim KS, Pae CU, Chae JH, et al. Effects of olanzapine on prolactin levels of female patients with schizophrenia treated with risperidone. J Clin Psychiatry. 2002;63(5):408–13.

    Article  PubMed  CAS  Google Scholar 

  126. Kinon BJ, Basson BR, Gilmore JA, Malcolm S, Stauffer VL. Strategies for switching from conventional antipsychotic drugs or risperidone to olanzapine. J Clin Psychiatry. 2000;61(11):833–40.

    Article  PubMed  CAS  Google Scholar 

  127. Kluge M, Wehmeier PM, Dittmann RW, et al. A simple switching strategy for inadequately treated patients with schizophrenia to olanzapine: changes in psychopathology and subjective well-being. Pharmacopsychiatry. 2005;38(1):6–12.

    Article  PubMed  CAS  Google Scholar 

  128. Labelle A, Bourget D, Boulay LJ, Ellis J, Tessier P. Switching outpatients with schizophrenia and related disorders on long-acting injectable antipsychotics to olanzapine: an open-label naturalistic pilot study. J Clin Psychopharmacol. 2002;22(6):545–53.

    Article  PubMed  CAS  Google Scholar 

  129. Lu Z, Hu J, Chen CK, et al. Effectiveness and safety of olanzapine in the treatment of schizophrenia among Asian patients switching from conventional antipsychotics. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31(1):32–40.

    Article  PubMed  CAS  Google Scholar 

  130. Novick D, Haro JM, Suarez D, Marques-Teixeira J, Naber D. Clinical consequences of switching antipsychotic drugs in outpatients with schizophrenia: 36-month results from the European Schizophrenia Outpatient Health Outcomes study. Int Clin Psychopharmacol. 2008;23(4):203–8.

    Article  PubMed  Google Scholar 

  131. Ritchie CW, Chiu E, Harrigan S, et al. The impact upon extra-pyramidal side effects, clinical symptoms and quality of life of a switch from conventional to atypical antipsychotics (risperidone or olanzapine) in elderly patients with schizophrenia. Int J Geriatr Psychiatry. 2003;18(5):432–40.

    Article  PubMed  CAS  Google Scholar 

  132. Takahashi H, Kamata M, Yoshida K, Ishigooka J, Higuchi H. Switching to olanzapine after unsuccessful treatment with risperidone during the first episode of schizophrenia: an open-label trial. J Clin Psychiatry. 2006;67(10):1577–82.

    Article  PubMed  CAS  Google Scholar 

  133. Littrell KH, Johnson CG, Hilligoss NM, Peabody CD, Littrell SH. Switching clozapine responders to olanzapine. J Clin Psychiatry. 2000;61(12):912–5.

    Article  PubMed  CAS  Google Scholar 

  134. Delassus-Guenault N, Jegouzo A, Odou P, et al. Clozapine-olanzapine: a potentially dangerous switch: a report of two cases. J Clin Pharm Ther. 1999;24(3):191–5.

    Article  PubMed  CAS  Google Scholar 

  135. Gopal S, Vijapurkar U, Lim P, Morozova M, Eerdekens M, Hough D. A 52-week open-label study of the safety and tolerability of paliperidone palmitate in patients with schizophrenia. J Psychopharmacol. 2011;25(5):685–97.

    Article  PubMed  CAS  Google Scholar 

  136. Hough D, Gopal S, Vijapurkar U, Lim P, Morozova M, Eerdekens M. Paliperidone palmitate maintenance treatment in delaying the time-to-relapse in patients with schizophrenia: a randomized, double-blind, placebo-controlled study. Schizophr Res. 2010;116(2–3):107–17.

    Article  PubMed  Google Scholar 

  137. Kramer M, Litman R, Hough D, et al. Paliperidone palmitate, a potential long-acting treatment for patients with schizophrenia. Results of a randomized, double-blind, placebo-controlled efficacy and safety study. Int J Neuropsychopharmacol. 2010;13(5):635–47.

    Article  PubMed  CAS  Google Scholar 

  138. Janssen Pharmaceuticals Inc. InvegaSustenna (paliperidone palmitate) Extended-release injectable suspension for intramuscular use. http://www.invegasustenna.com/important-product-information (Accessed 2 Oct 2012).

  139. Hoy SM, Scott LJ, Keating GM. Intramuscular paliperidone palmitate. CNS Drugs. 2010;24(3):227–44.

    Article  PubMed  CAS  Google Scholar 

  140. Nasrallah HA, Gopal S, Gassmann-Mayer C, et al. A controlled, evidence-based trial of paliperidone palmitate, a long-acting injectable antipsychotic, in schizophrenia. Neuropsychopharmacology. 2010;35(10):2072–82.

    Article  PubMed  CAS  Google Scholar 

  141. Johnson & Johnson Pharmaceutical Research & Development L.L.C. Efficacy and safety of a long acting anti-psychotic versus placebo inpatients with schizophrenia. http://download.veritasmedicine.com/PDF/CR003562_CSR.pdf (Accessed 2 Oct 2012).

  142. Gopal S, Gassmann-Mayer C, Palumbo J, Samtani MN, Shiwach R, Alphs L. Practical guidance for dosing and switching paliperidone palmitate treatment in patients with schizophrenia. Curr Med Res Opin. 2010;26(2):377–87.

    Article  PubMed  CAS  Google Scholar 

  143. Samtani MN, Gopal S, Gassmann-Mayer C, Alphs L, Palumbo JM. Dosing and switching strategies for paliperidone palmitate: based on population pharmacokinetic modelling and clinical trial data. CNS Drugs. 2011;25(10):829–45.

    PubMed  CAS  Google Scholar 

  144. Janssen Pharmaceuticals. INVEGA SUSTENNA (paliperidone palmitate) Extended-Release Injectable Suspension for intramuscular use. Available from URL: http://www.invegasustenna.com/important-product-information (Accessed 5 May 2012).

  145. Lai CH. Improvement of oral dyskinesia after switching from aripiprazole to paliperidone: a case report. J Neuropsychiatry Clin Neurosci. 2011;23(3):E18.

    Article  Google Scholar 

  146. Teng PR, Lane HY. Emergence of neuroleptic malignant syndrome while switching between risperidone and paliperidone. J Neuropsychiatry Clin Neurosci. 2011;23(4):E16–7.

    Article  PubMed  Google Scholar 

  147. Cortese L, Caligiuri MP, Williams R, et al. Reduction in neuroleptic-induced movement disorders after a switch to quetiapine in patients with schizophrenia. J Clin Psychopharmacol. 2008;28(1):69–73.

    Article  PubMed  CAS  Google Scholar 

  148. Gupta S, Masand PS, Virk S, et al. Weight decline in patients switching from olanzapine to quetiapine. Schizophr Res. 2004;70(1):57–62.

    Article  PubMed  Google Scholar 

  149. Larmo I, De Nayer A, Windhager E et al. Efficacy and tolerability of quetiapine in patients with schizophrenia who switched from haloperidol, olanzapine or risperidone. Hum Psychopharmacol. 2005;20(8):573–81.

    Article  PubMed  CAS  Google Scholar 

  150. Nakajima M, Terao T, Iwata N, Nakamura J. Switching female schizophrenic patients to quetiapine from conventional antipsychotic drugs: effects on hyperprolactinemia. Pharmacopsychiatry. 2005;38(1):17–9.

    Article  PubMed  CAS  Google Scholar 

  151. Ganesan S, Agambaram V, Randeree F, Eggens I, Huizar K, Meulien D. Switching from other antipsychotics to once-daily extended release quetiapine fumarate in patients with schizophrenia. Curr Med Res Opin. 2008;24(1):21–32.

    PubMed  CAS  Google Scholar 

  152. Moller HJ, Johnson S, Mateva T, et al. Evaluation of the feasibility of switching from immediate release quetiapine to extended release quetiapine fumarate in stable outpatients with schizophrenia. Int Clin Psychopharmacol. 2008;23(2):95–105.

    Article  PubMed  Google Scholar 

  153. Ganguli R, Brar JS, Mahmoud R, Berry SA, Pandina GJ. Assessment of strategies for switching patients from olanzapine to risperidone: a randomized, open-label, rater-blinded study. BMC Med. 2008;6:17.

    Article  PubMed  CAS  Google Scholar 

  154. Still DJ, Dorson PG, Crismon ML, Pousson C. Effects of switching inpatients with treatment-resistant schizophrenia from clozapine to risperidone. Psychiatr Serv. 1996;47(12):1382–4.

    PubMed  CAS  Google Scholar 

  155. Kirov GK, Murray RM, Seth RV, Feeney S. Observations on switching patients with schizophrenia to risperidone treatment. Risperidone Switching Study Group. Acta Psychiatr Scand. 1997;95(5):439–43.

    Article  PubMed  CAS  Google Scholar 

  156. Malla AK, Norman RM, Kotteda V, Zirul S. Switching from therapy with typical antipsychotic agents to risperidone: long-term impact on patient outcome. Clin Ther. 1999;21(5):806–17.

    Article  PubMed  CAS  Google Scholar 

  157. Meyer JM, Pandina G, Bossie CA, Turkoz I, Greenspan A. Effects of switching from olanzapine to risperidone on the prevalence of the metabolic syndrome in overweight or obese patients with schizophrenia or schizoaffective disorder: analysis of a multicenter, rater-blinded, open-label study. Clin Ther. 2005;27(12):1930–41.

    Article  PubMed  CAS  Google Scholar 

  158. Nakanishi S, Kunugi H, Murray RM, Nojima S, Ogawa T, Takahashi T. Effects of switching from conventional antipsychotics to risperidone in Japanese patients with chronic schizophrenia. Psychiatry Clin Neurosci. 2006;60(6):751–7.

    Article  PubMed  CAS  Google Scholar 

  159. van Os J, Bossie CA, Lasser RA. Improvements in stable patients with psychotic disorders switched from oral conventional antipsychotics therapy to long-acting risperidone. Int Clin Psychopharmacol. 2004;19(4):229–32.

    Article  PubMed  Google Scholar 

  160. Mahmoud RA, Engelhart LM, Janagap CC, Oster G, Ollendorf D. Risperidone versus conventional antipsychotics for schizophrenia and schizoaffective disorder: symptoms, quality of life and resource use under customary clinical care. Clin Drug Investig. 2004;24(5):275–86.

    Article  PubMed  CAS  Google Scholar 

  161. Hawley C, Turner M, Latif MA, Curtis V, Saleem PT, Wilton K. Switching stable patients with schizophrenia from depot and oral antipsychotics to long-acting injectable risperidone: reasons for switching and safety. Hum Psychopharmacol. 2010;25(1):37–46.

    Article  PubMed  CAS  Google Scholar 

  162. Marinis TD, Saleem PT, Glue P, et al. Switching to long-acting injectable risperidone is beneficial with regard to clinical outcomes, regardless of previous conventional medication in patients with schizophrenia. Pharmacopsychiatry. 2007;40(6):257–63.

    Article  PubMed  CAS  Google Scholar 

  163. Muscatello MR, Bruno A, Pandolfo G, Mico U, Settineri S, Zoccali R. Emerging treatments in the management of schizophrenia: focus on sertindole. Drug Des Devel Ther. 2010;4:187–201.

    PubMed  CAS  Google Scholar 

  164. de Hert M, Mittoux A, He Y, Peuskens J. Metabolic parameters in the short- and long-term treatment of schizophrenia with sertindole or risperidone. Eur Arch Psychiatry Clin Neurosci. 2011;261(4):231–9.

    Article  PubMed  Google Scholar 

  165. Berecz R, Glaub T, Kellermann M, de la Rubia A, Llerena A, Degrell I. Clozapine withdrawal symptoms after change to sertindole in a schizophrenic patient. Pharmacopsychiatry. 2000;33(1):42–4.

    Article  PubMed  CAS  Google Scholar 

  166. Hanisch F, Friedemann J, Pillmann F. Combined treatment with quetiapine and sertindole in therapy refractory insomnia after clozapine discontinuation. J Psychopharmacol. 2010;24(11):1725–6.

    Article  PubMed  CAS  Google Scholar 

  167. Perquin LN. Treatment with the new antipsychotic sertindole for late-occurring undesirable movement effects. Int Clin Psychopharmacol. 2005;20(6):335–8.

    Article  PubMed  Google Scholar 

  168. Thomas SH, Drici MD, Hall GC, et al. Safety of sertindole versus risperidone in schizophrenia: principal results of the sertindole cohort prospective study (SCoP). Acta Psychiatr Scand. 2010;122(5):345–55.

    Article  PubMed  CAS  Google Scholar 

  169. Alptekin K, Hafez J, Brook S, et al. Efficacy and tolerability of switching to ziprasidone from olanzapine, risperidone or haloperidol: an international, multicenter study. Int Clin Psychopharmacol. 2009;24(5):229–38.

    Article  PubMed  Google Scholar 

  170. Harvey PD, Meltzer H, Simpson GM, et al. Improvement in cognitive function following a switch to ziprasidone from conventional antipsychotics, olanzapine, or risperidone in outpatients with schizophrenia. Schizophr Res. 2004;66(2–3):101–13.

    Article  PubMed  Google Scholar 

  171. Karayal ON, Glue P, Bachinsky M, et al. Switching from quetiapine to ziprasidone: a sixteen-week, open-label, multicenter study evaluating the effectiveness and safety of ziprasidone in outpatient subjects with schizophrenia or schizoaffective disorder. J Psychiatr Pract. 2011;17(2):100–9.

    Article  PubMed  Google Scholar 

  172. Weiden PJ, Daniel DG, Simpson G, Romano SJ. Improvement in indices of health status in outpatients with schizophrenia switched to ziprasidone. J Clin Psychopharmacol. 2003;23(6):595–600.

    Article  PubMed  CAS  Google Scholar 

  173. Kim SW, Shin IS, Kim JM, Bae KY, Yang SJ, Yoon JS. Effectiveness of switching from aripiprazole to ziprasidone in patients with schizophrenia. Clin Neuropharmacol. 2010;33(3):121–5.

    Article  PubMed  CAS  Google Scholar 

  174. Montes JM, Rodriguez JL, Balbo E, et al. Improvement in antipsychotic-related metabolic disturbances in patients with schizophrenia switched to ziprasidone. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31(2):383–8.

    Article  PubMed  CAS  Google Scholar 

  175. Rossi A, Vita A, Tiradritti P, Romeo F. Assessment of clinical and metabolic status, and subjective well-being, in schizophrenic patients switched from typical and atypical antipsychotics to ziprasidone. Int Clin Psychopharmacol. 2008;23(4):216–22.

    Article  PubMed  Google Scholar 

  176. Stip E, Zhornitsky S, Potvin S, Tourjman V. Switching from conventional antipsychotics to ziprasidone: a randomized, open-label comparison of regimen strategies. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34(6):997–1000.

    Article  PubMed  CAS  Google Scholar 

  177. Weiden PJ, Simpson GM, Potkin SG, O’Sullivan RL. Effectiveness of switching to ziprasidone for stable but symptomatic outpatients with schizophrenia. J Clin Psychiatry. 2003;64(5):580–8.

    Article  PubMed  CAS  Google Scholar 

  178. Rossi A, Canas F, Fagiolini A, et al. Switching among antipsychotics in everyday clinical practice: focus on ziprasidone. Postgrad Med. 2011;123(1):135–59.

    Article  PubMed  Google Scholar 

  179. Essock SM, Covell NH, Davis SM, Stroup TS, Rosenheck RA, Lieberman JA. Effectiveness of switching antipsychotic medications. Am J Psychiatry. 2006;163(12):2090–5.

    Article  PubMed  Google Scholar 

  180. Faries DE, Ascher-Svanum H, Nyhuis AW, Kinon BJ. Clinical and economic ramifications of switching antipsychotics in the treatment of schizophrenia. BMC Psychiatry. 2009;9:54.

    Article  PubMed  Google Scholar 

  181. Rosenheck RA, Davis S, Covell N, et al. Does switching to a new antipsychotic improve outcomes? Data from the CATIE trial. Schizophr Res. 2009;107(1):22–9.

    Article  PubMed  Google Scholar 

  182. Miller CH, Hummer M, Oberbauer H, Kurzthaler I, DeCol C, Fleischhacker WW. Risk factors for the development of neuroleptic induced akathisia. Eur Neuropsychopharmacol. 1997;7(1):51–5.

    Article  PubMed  CAS  Google Scholar 

  183. Haddad PM, Das A, Keyhani S, Chaudhry IB. Antipsychotic drugs and extrapyramidal side effects in first episode psychosis: a systematic review of head-head comparisons. J Psychopharmacol. 2012;26(5 Suppl):15–26.

    Article  PubMed  Google Scholar 

  184. Stubner S, Rustenbeck E, Grohmann R, et al. Severe and uncommon involuntary movement disorders due to psychotropic drugs. Pharmacopsychiatry. 2004;37(Suppl 1):S54–64.

    PubMed  Google Scholar 

  185. Burns T, Chabannes JP, Demyttenaere K. Switching antipsychotic medications: general recommendations and switching to amisulpride. Curr Med Res Opin. 2002;18(4):201–8.

    Article  PubMed  CAS  Google Scholar 

  186. Conley RR, Kelly DL. Drug-drug interactions associated with second-generation antipsychotics: considerations for clinicians and patients. Psychopharmacol Bull. 2007;40(1):77–97.

    PubMed  Google Scholar 

  187. de Leon J, Santoro V, D’Arrigo C, Spina E. Interactions between antiepileptics and second-generation antipsychotics. Expert Opin Drug Metab Toxicol. 2012;8(3):311–34.

    Article  PubMed  CAS  Google Scholar 

  188. Urichuk L, Prior TI, Dursun S, Baker G. Metabolism of atypical antipsychotics: involvement of cytochrome p450 enzymes and relevance for drug-drug interactions. Curr Drug Metab. 2008;9(5):410–8.

    Article  PubMed  CAS  Google Scholar 

  189. Mori K, Nagao M, Yamashita H, Morinobu S, Yamawaki S. Effect of switching to atypical antipsychotics on memory in patients with chronic schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2004;28(4):659–65.

    Article  PubMed  CAS  Google Scholar 

  190. Davis JM, Leucht S. Commentary on strategies for switching antipsychotics. BMC Med. 2008;6:18.

    Article  PubMed  Google Scholar 

  191. Kane JM, Leucht S, Carpenter D, Docherty JP. The expert consensus guideline series. Optimizing pharmacologic treatment of psychotic disorders: introduction: methods, commentary, and summary. J Clin Psychiatry. 2003;64(Suppl 12):5–19.

    PubMed  Google Scholar 

  192. Edlinger M, Wolfgang FW. Review: no evidence to support gradual over abrupt switching of antipsychotics. Evid Based Ment Health. 2006;9(1):10.

    Article  PubMed  Google Scholar 

  193. Remington G, Chue P, Stip E, Kopala L, Girard T, Christensen B. The crossover approach to switching antipsychotics: what is the evidence? Schizophr Res. 2005;76(2–3):267–72.

    Article  PubMed  Google Scholar 

  194. Miodownik C, Lerner V, Kibari A, Toder D, Cohen H. The effect of sudden clozapine discontinuation on management of schizophrenic patients: A retrospective controlled study. J Clin Psychiatry. 2006;67(8):1204–8.

    Article  PubMed  CAS  Google Scholar 

  195. Scheifler PL, Weiden PJ. Beyond psychopharmacology. Psychosocial strategies for getting the best results when switching antipsychotic medications. Postgrad Med. 2006;Spec No: 45–53.

  196. Abbas AI, Hedlund PB, Huang XP, Tran TB, Meltzer HY, Roth BL. Amisulpride is a potent 5-HT7 antagonist: relevance for antidepressant actions in vivo. Psychopharmacology (Berl). 2009;205(1):119–28.

    Article  CAS  Google Scholar 

  197. Keck PE Jr, McElroy SL. Aripiprazole: a partial dopamine D2 receptor agonist antipsychotic. Expert Opin Investig Drugs. 2003;12(4):655–62.

    Article  PubMed  CAS  Google Scholar 

  198. Shahid M, Walker GB, Zorn SH, Wong EH. Asenapine: a novel psychopharmacologic agent with a unique human receptor signature. J Psychopharmacol. 2009;23(1):65–73.

    Article  PubMed  CAS  Google Scholar 

  199. Bymaster FP, Calligaro DO, Falcone JF, et al. Radioreceptor binding profile of the atypical antipsychotic olanzapine. Neuropsychopharmacology. 1996;14(2):87–96.

    Article  PubMed  CAS  Google Scholar 

  200. Citrome L. Iloperidone: chemistry, pharmacodynamics, pharmacokinetics and metabolism, clinical efficacy, safety and tolerability, regulatory affairs, and an opinion. Expert Opin Drug Metab Toxicol. 2010;6(12):1551–64.

    Article  PubMed  CAS  Google Scholar 

  201. Leysen JE, Janssen PM, Megens AA, Schotte A. Risperidone: a novel antipsychotic with balanced serotonin-dopamine antagonism, receptor occupancy profile, and pharmacologic activity. J Clin Psychiatry. 1994;55(Suppl):5–12.

    PubMed  Google Scholar 

  202. Arnt J, Skarsfeldt T. Do novel antipsychotics have similar pharmacological characteristics? A review of the evidence. Neuropsychopharmacology. 1998;18(2):63–101.

    Article  PubMed  CAS  Google Scholar 

  203. Ishibashi T, Horisawa T, Tokuda K, et al. Pharmacological profile of lurasidone, a novel antipsychotic agent with potent 5-hydroxytryptamine 7 (5-HT7) and 5-HT1A receptor activity. J Pharmacol Exp Ther. 2010;334(1):171–81.

    Article  PubMed  CAS  Google Scholar 

  204. Bishara D, Taylor D. Upcoming agents for the treatment of schizophrenia: mechanism of action, efficacy and tolerability. Drugs. 2008;68(16):2269–92.

    Article  PubMed  CAS  Google Scholar 

  205. Balle T, Perregaard J, Ramirez MT, et al. Synthesis and structure-affinity relationship investigations of 5-heteroaryl-substituted analogues of the antipsychotic sertindole. A new class of highly selective alpha(1) adrenoceptor antagonists. J Med Chem. 2003;46(2):265–83.

    Article  PubMed  CAS  Google Scholar 

  206. Seeger TF, Seymour PA, Schmidt AW, et al. Ziprasidone (CP-88,059): a new antipsychotic with combined dopamine and serotonin receptor antagonist activity. J Pharmacol Exp Ther. 1995;275(1):101–13.

    PubMed  CAS  Google Scholar 

  207. Kongsamut S, Roehr JE, Cai J, et al. Iloperidone binding to human and rat dopamine and 5-HT receptors. Eur J Pharmacol. 1996;317(2–3):417–23.

    Article  PubMed  CAS  Google Scholar 

  208. Meyer JM, Loebel AD, Schweizer E. Lurasidone: a new drug in development for schizophrenia. Expert Opin Investig Drugs. 2009;18(11):1715–26.

    Article  PubMed  CAS  Google Scholar 

  209. Richelson E, Souder T. Binding of antipsychotic drugs to human brain receptors focus on newer generation compounds. Life Sci. 2000;68(1):29–39.

    Article  PubMed  CAS  Google Scholar 

  210. Mork A, Witten LM, Arnt J. Effect of sertindole on extracellular dopamine, acetylcholine, and glutamate in the medial prefrontal cortex of conscious rats: a comparison with risperidone and exploration of mechanisms involved. Psychopharmacology (Berl). 2009;206(1):39–49.

    Article  CAS  Google Scholar 

  211. Knight JA, Smith C, Toohey N, Klein MT, Teitler M. Pharmacological analysis of the novel, rapid, and potent inactivation of the human 5-hydroxytryptamine7 receptor by risperidone, 9-OH-risperidone, and other inactivating antagonists. Mol Pharmacol. 2009;75(2):374–80.

    Article  PubMed  CAS  Google Scholar 

  212. Subramanian N, Kalkman HO. Receptor profile of P88–8991 and P95–12113, metabolites of the novel antipsychotic iloperidone. Prog Neuropsychopharmacol Biol Psychiatry. 2002;26(3):553–60.

    Article  PubMed  CAS  Google Scholar 

  213. Schotte A, Janssen PF, Gommeren W, et al. Risperidone compared with new and reference antipsychotic drugs: in vitro and in vivo receptor binding. Psychopharmacology (Berl). 1996;124(1–2):57–73.

    Article  CAS  Google Scholar 

  214. Kalkman HO, Feuerbach D, Lotscher E, Schoeffter P. Functional characterization of the novel antipsychotic iloperidone at human D2, D3, alpha 2C, 5-HT6, and 5-HT1A receptors. Life Sci. 2003;73(9):1151–9.

    Article  PubMed  CAS  Google Scholar 

  215. Cosi C, Koek W. Agonist, antagonist, and inverse agonist properties of antipsychotics at human recombinant 5-HT(1A) receptors expressed in HeLa cells. Eur J Pharmacol. 2001;433(1):55–62.

    Article  PubMed  CAS  Google Scholar 

  216. Herrick-Davis K, Grinde E, Teitler M. Inverse agonist activity of atypical antipsychotic drugs at human 5-hydroxytryptamine2C receptors. J Pharmacol Exp Ther. 2000;295(1):226–32.

    PubMed  CAS  Google Scholar 

  217. Zahrt J, Taylor JR, Mathew RG, Arnsten AF. Supranormal stimulation of D1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance. J Neurosci. 1997;17(21):8528–35.

    PubMed  CAS  Google Scholar 

  218. Granon S, Passetti F, Thomas KL, Dalley JW, Everitt BJ, Robbins TW. Enhanced and impaired attentional performance after infusion of D1 dopaminergic receptor agents into rat prefrontal cortex. J Neurosci. 2000;20(3):1208–15.

    PubMed  CAS  Google Scholar 

  219. Mattay VS, Goldberg TE, Fera F, et al. Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine. Proc Natl Acad Sci USA. 2003;100(10):6186–91.

    Article  PubMed  CAS  Google Scholar 

  220. Xu TX, Sotnikova TD, Liang C, et al. Hyperdopaminergic tone erodes prefrontal long-term potential via a D2 receptor-operated protein phosphatase gate. J Neurosci. 2009;29(45):14086–99.

    Article  PubMed  CAS  Google Scholar 

  221. Tarsy D, Baldessarini RJ. Epidemiology of tardive dyskinesia: is risk declining with modern antipsychotics? Mov Disord. 2006;21(5):589–98.

    Article  PubMed  Google Scholar 

  222. Joseph JD, Wang YM, Miles PR, et al. Dopamine autoreceptor regulation of release and uptake in mouse brain slices in the absence of D(3) receptors. Neuroscience. 2002;112(1):39–49.

    Article  PubMed  CAS  Google Scholar 

  223. De Mei C, Ramos M, Iitaka C, Borrelli E. Getting specialized: presynaptic and postsynaptic dopamine D2 receptors. Curr Opin Pharmacol. 2009;9(1):53–8.

    Article  PubMed  CAS  Google Scholar 

  224. Rondou P, Haegeman G, Van CK. The dopamine D4 receptor: biochemical and signalling properties. Cell Mol Life Sci. 2010;67(12):1971–86.

    Article  PubMed  CAS  Google Scholar 

  225. Meador-Woodruff JH, Grandy DK, Van Tol HH, et al. Dopamine receptor gene expression in the human medial temporal lobe. Neuropsychopharmacology. 1994;10(4):239–48.

    PubMed  CAS  Google Scholar 

  226. Wong AH, Van Tol HH. The dopamine D4 receptors and mechanisms of antipsychotic atypicality. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27(7):1091–9.

    Article  PubMed  CAS  Google Scholar 

  227. Wilson JM, Sanyal S, Van Tol HH. Dopamine D2 and D4 receptor ligands: relation to antipsychotic action. Eur J Pharmacol. 1998;351(3):273–86.

    Article  PubMed  CAS  Google Scholar 

  228. Pucadyil TJ, Kalipatnapu S, Chattopadhyay A. The serotonin1A receptor: a representative member of the serotonin receptor family. Cell Mol Neurobiol. 2005;25(3–4):553–80.

    Article  PubMed  CAS  Google Scholar 

  229. Luna-Munguia H, Manuel-Apolinar L, Rocha L, Meneses A. 5-HT1A receptor expression during memory formation. Psychopharmacology (Berl). 2005;181(2):309–18.

    Article  CAS  Google Scholar 

  230. Kusserow H, Davies B, Hortnagl H, et al. Reduced anxiety-related behaviour in transgenic mice overexpressing serotonin 1A receptors. Brain Res Mol Brain Res. 2004;129(1–2):104–16.

    Article  PubMed  CAS  Google Scholar 

  231. Meltzer HY, Sumiyoshi T. Does stimulation of 5-HT(1A) receptors improve cognition in schizophrenia? Behav Brain Res. 2008;195(1):98–102.

    Article  PubMed  CAS  Google Scholar 

  232. Sumiyoshi T, Park S, Jayathilake K, Roy A, Ertugrul A, Meltzer HY. Effect of buspirone, a serotonin1A partial agonist, on cognitive function in schizophrenia: a randomized, double-blind, placebo-controlled study. Schizophr Res. 2007;95(1–3):158–68.

    Article  PubMed  Google Scholar 

  233. Sumiyoshi T, Meltzer HY. Serotonin 1A receptors in memory function. Am J Psychiatry. 2004;161(8):1505–6.

    Article  PubMed  Google Scholar 

  234. Ohno Y. Therapeutic role of 5-HT1A receptors in the treatment of schizophrenia and Parkinson’s disease. CNS Neurosci Ther. 2011;17(1):58–65.

    Article  PubMed  CAS  Google Scholar 

  235. Neal-Beliveau BS, Joyce JN, Lucki I. Serotonergic involvement in haloperidol-induced catalepsy. J Pharmacol Exp Ther. 1993;265(1):207–17.

    PubMed  CAS  Google Scholar 

  236. Prinssen EP, Colpaert FC, Koek W. 5-HT1A receptor activation and anti-cataleptic effects: high-efficacy agonists maximally inhibit haloperidol-induced catalepsy. Eur J Pharmacol. 2002;453(2–3):217–21.

    Article  PubMed  CAS  Google Scholar 

  237. Prinssen EP, Koek W, Colpaert FC, Kleven MS. Repeated treatment with 8-OH-DPAT induces tolerance to its ability to produce the 5-HT1A behavioural syndrome, but not to its ability to attenuate haloperidol-induced catalepsy. Behav Pharmacol. 2000;11(3–4):299–305.

    Article  PubMed  CAS  Google Scholar 

  238. Shimizu S, Tatara A, Imaki J, Ohno Y. Role of cortical and striatal 5-HT1A receptors in alleviating antipsychotic-induced extrapyramidal disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34(6):877–81.

    Article  PubMed  CAS  Google Scholar 

  239. Ohno Y, Shimizu S, Imaki J. Effects of tandospirone, a 5-HT1A agonistic anxiolytic agent, on haloperidol-induced catalepsy and forebrain Fos expression in mice. J Pharmacol Sci. 2009;109(4):593–9.

    Article  PubMed  CAS  Google Scholar 

  240. Ohno Y, Shimizu S, Imaki J, et al. Anticataleptic 8-OH-DPAT preferentially counteracts with haloperidol-induced Fos expression in the dorsolateral striatum and the core region of the nucleus accumbens. Neuropharmacology. 2008;55(5):717–23.

    Article  PubMed  CAS  Google Scholar 

  241. Ohno Y, Shimizu S, Imaki J, et al. Evaluation of the antibradykinetic actions of 5-HT1A agonists using the mouse pole test. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32(5):1302–7.

    Article  PubMed  CAS  Google Scholar 

  242. Navailles S, De Deurwaerdère P. Presynaptic control of serotonin on striatal dopamine function. Psychopharmacology (Berl). 2011;213(2–3):213–42.

    Article  CAS  Google Scholar 

  243. Meltzer HY, Li Z, Kaneda Y, Ichikawa J. Serotonin receptors: their key role in drugs to treat schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27(7):1159–72.

    Article  PubMed  CAS  Google Scholar 

  244. Remington G, Kapur S. D2 and 5-HT2 receptor effects of antipsychotics: bridging basic and clinical findings using PET. J Clin Psychiatry. 1999;60(Suppl 10):15–9.

    PubMed  CAS  Google Scholar 

  245. Kapur S, Remington G. Serotonin-dopamine interaction and its relevance to schizophrenia. Am J Psychiatry. 1996;153(4):466–76.

    PubMed  CAS  Google Scholar 

  246. Horacek J, Bubenikova-Valesova V, Kopecek M, et al. Mechanism of action of atypical antipsychotic drugs and the neurobiology of schizophrenia. CNS Drugs. 2006;20(5):389–409.

    Article  PubMed  CAS  Google Scholar 

  247. Meltzer HY, Huang M. In vivo actions of atypical antipsychotic drug on serotonergic and dopaminergic systems. Prog Brain Res. 2008;172:177–97.

    Article  PubMed  CAS  Google Scholar 

  248. Creed-Carson M, Oraha A, Nobrega JN. Effects of 5-HT(2A) and 5-HT(2C) receptor antagonists on acute and chronic dyskinetic effects induced by haloperidol in rats. Behav Brain Res. 2011;219(2):273–9.

    Article  PubMed  CAS  Google Scholar 

  249. Codony X, Vela JM, Ramirez MJ. 5-HT(6) receptor and cognition. Curr Opin Pharmacol. 2011;11(1):94–100.

    Article  PubMed  CAS  Google Scholar 

  250. Marazziti D, Baroni S, Dell’Osso MC, Bordi F, Borsini F. Serotonin receptors of type 6 (5-HT6): what can we expect from them? Curr Med Chem. 2011;18(18):2783–90.

    Article  PubMed  CAS  Google Scholar 

  251. Hedlund PB. The 5-HT7 receptor and disorders of the nervous system: an overview. Psychopharmacology (Berl). 2009;206(3):345–54.

    Article  CAS  Google Scholar 

  252. Brown RE, Stevens DR, Haas HL. The physiology of brain histamine. Prog Neurobiol. 2001;63(6):637–72.

    Article  PubMed  CAS  Google Scholar 

  253. Fukagawa K, Sakata T, Shiraishi T, et al. Neuronal histamine modulates feeding behavior through H1-receptor in rat hypothalamus. Am J Physiol. 1989;256(3 Pt 2):R605–11.

    PubMed  CAS  Google Scholar 

  254. Yanai K, Son LZ, Endou M, et al. Behavioural characterization and amounts of brain monoamines and their metabolites in mice lacking histamine H1 receptors. Neuroscience. 1998;87(2):479–87.

    Article  PubMed  CAS  Google Scholar 

  255. Schwartz JC, Arrang JM, Garbarg M, Traiffort E. Histamine. In: Bloom FE, Kupfer DJ, editors. Psychopharmacology: the fourth generation of progress. New York: Raven Press; 1995. p. 397–405.

    Google Scholar 

  256. Haas H, Panula P. The role of histamine and the tuberomamillary nucleus in the nervous system. Nat Rev Neurosci. 2003;4(2):121–30.

    Article  PubMed  CAS  Google Scholar 

  257. Mercer LP, Kelley DS, Humphries LL, Dunn JD. Manipulation of central nervous system histamine or histaminergic receptors (H1) affects food intake in rats. J Nutr. 1994;124(7):1029–36.

    PubMed  CAS  Google Scholar 

  258. Watanabe T, Yanai K. Studies on functional roles of the histaminergic neuron system by using pharmacological agents, knockout mice and positron emission tomography. Tohoku J Exp Med. 2001;195(4):197–217.

    Article  PubMed  CAS  Google Scholar 

  259. Masaki T, Yoshimatsu H, Chiba S, Watanabe T, Sakata T. Targeted disruption of histamine H1-receptor attenuates regulatory effects of leptin on feeding, adiposity, and UCP family in mice. Diabetes. 2001;50(2):385–91.

    Article  PubMed  CAS  Google Scholar 

  260. Schwartz JC, Arrang JM, Garbarg M, Pollard H, Ruat M. Histaminergic transmission in the mammalian brain. Physiol Rev. 1991;71:1–51.

    PubMed  CAS  Google Scholar 

  261. Bhargava KP, Kulshrestha VK, Santhakumari G, Srivastava YP. Mechanism of histamine-induced antidiuretic response. Br J Pharmacol. 1973;47(4):700–6.

    Article  PubMed  CAS  Google Scholar 

  262. Kjaer A, Knigge U, Rouleau A, Garbarg M, Warberg J. Dehydration-induced release of vasopressin involves activation of hypothalamic histaminergic neurons. Endocrinology. 1994;135(2):675–81.

    Article  PubMed  CAS  Google Scholar 

  263. Poulakos JJ, Gertner SB. Studies on the cardiovascular actions of central histamine H1 and H2 receptors. J Pharmacol Exp Ther. 1989;250(2):500–7.

    PubMed  CAS  Google Scholar 

  264. Malmberg-Aiello P, Lamberti C, Ghelardini C, Giotti A, Bartolini A. Role of histamine in rodent antinociception. Br J Pharmacol. 1994;111(4):1269–79.

    Article  PubMed  CAS  Google Scholar 

  265. Malmberg-Aiello P, Lamberti C, Ipponi A, Hanninen J, Ghelardini C, Bartolini A. Effects of two histamine-N-methyltransferase inhibitors, SKF 91488 and BW 301 U, in rodent antinociception. Naunyn Schmiedebergs Arch Pharmacol. 1997;355(3):354–60.

    Article  PubMed  CAS  Google Scholar 

  266. Traiffort E, Pollard H, Moreau J, et al. Pharmacological characterization and autoradiographic localization of histamine H2 receptors in human brain identified with [125I]iodoaminopotentidine. J Neurochem. 1992;59(1):290–9.

    Article  PubMed  CAS  Google Scholar 

  267. Vizuete ML, Traiffort E, Bouthenet ML, et al. Detailed mapping of the histamine H2 receptor and its gene transcripts in guinea-pig brain. Neuroscience. 1997;80(2):321–43.

    Article  PubMed  CAS  Google Scholar 

  268. Privou C, Knoche A, Hasenohrl RU, Huston JP. The H1- and H2-histamine blockers chlorpheniramine and ranitidine applied to the nucleus basalis magnocellularis region modulate anxiety and reinforcement related processes. Neuropharmacology. 1998;37(8):1019–32.

    Article  PubMed  CAS  Google Scholar 

  269. Dhawan BN, Shukla R, Srimal RC. Analysis of histamine receptors in the central thermoregulatory mechanism of Mastomys natalensis. Br J Pharmacol. 1982;75(1):145–9.

    Article  PubMed  CAS  Google Scholar 

  270. Donoso AO, Bannza AM. Acute effects of histamine on plasma prolactin and luteininzing hormone levels in male rats. J Neural Transm. 1976;39(1–2):95–101.

    Article  PubMed  CAS  Google Scholar 

  271. Appl H, Holzammer T, Dove S, Haen E, Strasser A, Seifert R. Interactions of recombinant human histamine H(1), H (2), H (3), and H (4) receptors with 34 antidepressants and antipsychotics. Naunyn Schmiedebergs Arch Pharmacol. 2012;385(2):145–70.

    Article  PubMed  CAS  Google Scholar 

  272. Arrang JM, Garbarg M, Schwartz JC. Auto-inhibition of brain histamine release mediated by a novel class (H3) of histamine receptor. Nature. 1983;302(5911):832–7.

    Article  PubMed  CAS  Google Scholar 

  273. Ookuma K, Sakata T, Fukagawa K, et al. Neuronal histamine in the hypothalamus suppresses food intake in rats. Brain Res. 1993;628(1–2):235–42.

    Article  PubMed  CAS  Google Scholar 

  274. Schwartz JC, Arrang JM, Garbarg M, Korner M. Properties and roles of the three subclasses of histamine receptors in brain. J Exp Biol. 1986;124:203–24.

    PubMed  CAS  Google Scholar 

  275. Haaksma EE, Leurs R, Timmerman H. Histamine receptors: subclasses and specific ligands. Pharmacol Ther. 1990;47(1):73–104.

    Article  PubMed  CAS  Google Scholar 

  276. Brown RE, Reymann KG. Histamine H3 receptor-mediated depression of synaptic transmission in the dentate gyrus of the rat in vitro. J Physiol. 1996;496(Pt 1):175–84.

    PubMed  CAS  Google Scholar 

  277. Garcia M, Floran B, Arias-Montano JA, Young JM, Aceves J. Histamine H3 receptor activation selectively inhibits dopamine D1 receptor-dependent [3H]GABA release from depolarization-stimulated slices of rat substantia nigra pars reticulata. Neuroscience. 1997;80(1):241–9.

    Article  PubMed  CAS  Google Scholar 

  278. Schlicker E, Fink K, Hinterthaner M, Gothert M. Inhibition of noradrenaline release in the rat brain cortex via presynaptic H3 receptors. Naunyn Schmiedebergs Arch Pharmacol. 1989;340(6):633–8.

    Article  PubMed  CAS  Google Scholar 

  279. Schlicker E, Fink K, Detzner M, Gothert M. Histamine inhibits dopamine release in the mouse striatum via presynaptic H3 receptors. J Neural Transm Gen Sect. 1993;93(1):1–10.

    Article  PubMed  CAS  Google Scholar 

  280. Arrang JM, Drutel G, Schwartz JC. Characterization of histamine H3 receptors regulating acetylcholine release in rat entorhinal cortex. Br J Pharmacol. 1995;114(7):1518–22.

    Article  PubMed  CAS  Google Scholar 

  281. Schlicker E, Betz R, Gothert M. Histamine H3 receptor-mediated inhibition of serotonin release in the rat brain cortex. Naunyn Schmiedebergs Arch Pharmacol. 1988;337(5):588–90.

    Article  PubMed  CAS  Google Scholar 

  282. Hill SJ, Ganellin CR, Timmerman H, et al. International Union of Pharmacology. XIII. Classification of histamine receptors. Pharmacol Rev. 1997;49(3):253–78.

    PubMed  CAS  Google Scholar 

  283. Tokita S, Takahashi K, Kotani H. Recent advances in molecular pharmacology of the histamine systems: physiology and pharmacology of histamine H3 receptor: roles in feeding regulation and therapeutic potential for metabolic disorders. J Pharmacol Sci. 2006;101(1):12–8.

    Article  PubMed  CAS  Google Scholar 

  284. Wada H, Inagaki N, Itowi N, Yamatodani A. Histaminergic neuron system: morphological features and possible functions. Agents Actions Suppl. 1991;33:11–27.

    PubMed  CAS  Google Scholar 

  285. Ito C. Histamine H3-receptor inverse agonists as novel antipsychotics. Cent Nerv Syst Agents Med Chem. 2009;9(2):132–6.

    Article  PubMed  CAS  Google Scholar 

  286. Nakamura T, Itadani H, Hidaka Y, Ohta M, Tanaka K. Molecular cloning and characterization of a new human histamine receptor, HH4R. Biochem Biophys Res Commun. 2000;279(2):615–20.

    Article  PubMed  CAS  Google Scholar 

  287. Coruzzi G, Pozzoli C, Adami M, et al. Strain-dependent effects of the histamine H(4) receptor antagonist JNJ7777120 in a murine model of acute skin inflammation. Exp Dermatol. 2012;21(1):32–7.

    Article  PubMed  CAS  Google Scholar 

  288. Hsieh GC, Chandran P, Salyers AK, et al. H4 receptor antagonism exhibits anti-nociceptive effects in inflammatory and neuropathic pain models in rats. Pharmacol Biochem Behav. 2010;95(1):41–50.

    Article  PubMed  CAS  Google Scholar 

  289. Flynn DD, Ferrari-DiLeo G, Mash DC, Levey AI. Differential regulation of molecular subtypes of muscarinic receptors in Alzheimer’s disease. J Neurochem. 1995;64(4):1888–91.

    Article  PubMed  CAS  Google Scholar 

  290. Alcantara AA, Mrzljak L, Jakab RL, Levey AI, Hersch SM, Goldman-Rakic PS. Muscarinic m1 and m2 receptor proteins in local circuit and projection neurons of the primate striatum: anatomical evidence for cholinergic modulation of glutamatergic prefronto-striatal pathways. J Comp Neurol. 2001;434(4):445–60.

    Article  PubMed  CAS  Google Scholar 

  291. Mrzljak L, Levey AI, Goldman-Rakic PS. Association of m1 and m2 muscarinic receptor proteins with asymmetric synapses in the primate cerebral cortex: morphological evidence for cholinergic modulation of excitatory neurotransmission. Proc Natl Acad Sci USA. 1993;90(11):5194–8.

    Article  PubMed  CAS  Google Scholar 

  292. Nathanson NM. Synthesis, trafficking, and localization of muscarinic acetylcholine receptors. Pharmacol Ther. 2008;119(1):33–43.

    Article  PubMed  CAS  Google Scholar 

  293. Levey AI, Edmunds SM, Koliatsos V, Wiley RG, Heilman CJ. Expression of m1–m4 muscarinic acetylcholine receptor proteins in rat hippocampus and regulation by cholinergic innervation. J Neurosci. 1995;15(5 Pt 2):4077–92.

    PubMed  CAS  Google Scholar 

  294. Rouse ST, Levey AI. Muscarinic acetylcholine receptor immunoreactivity after hippocampal commissural/associational pathway lesions: evidence for multiple presynaptic receptor subtypes. J Comp Neurol. 1997;380(3):382–94.

    Article  PubMed  CAS  Google Scholar 

  295. Volpicelli LA, Levey AI. Muscarinic acetylcholine receptor subtypes in cerebral cortex and hippocampus. Prog Brain Res. 2004;145:59–66.

    Article  PubMed  CAS  Google Scholar 

  296. Michal P, Lysikova M, El-Fakahany EE, Tucek S. Clozapine interaction with the M2 and M4 subtypes of muscarinic receptors. Eur J Pharmacol. 1999;376(1–2):119–25.

    Article  PubMed  CAS  Google Scholar 

  297. Olianas MC, Maullu C, Onali P. Mixed agonist-antagonist properties of clozapine at different human cloned muscarinic receptor subtypes expressed in Chinese hamster ovary cells. Neuropsychopharmacology. 1999;20(3):263–70.

    Article  PubMed  CAS  Google Scholar 

  298. Mrzljak L, Levey AI, Rakic P. Selective expression of m2 muscarinic receptor in the parvocellular channel of the primate visual cortex. Proc Natl Acad Sci USA. 1996;93(14):7337–40.

    Article  PubMed  CAS  Google Scholar 

  299. Mrzljak L, Levey AI, Belcher S, Goldman-Rakic PS. Localization of the m2 muscarinic acetylcholine receptor protein and mRNA in cortical neurons of the normal and cholinergically deafferented rhesus monkey. J Comp Neurol. 1998;390(1):112–32.

    Article  PubMed  CAS  Google Scholar 

  300. Decossas M, Bloch B, Bernard V. Trafficking of the muscarinic m2 autoreceptor in cholinergic basalocortical neurons in vivo: differential regulation of plasma membrane receptor availability and intraneuronal localization in acetylcholinesterase-deficient and -inhibited mice. J Comp Neurol. 2003;462(3):302–14.

    Article  PubMed  CAS  Google Scholar 

  301. Bonsi P, Martella G, Cuomo D, et al. Loss of muscarinic autoreceptor function impairs long-term depression but not long-term potentiation in the striatum. J Neurosci. 2008;28(24):6258–63.

    Article  PubMed  CAS  Google Scholar 

  302. Rouse ST, Edmunds SM, Yi H, Gilmor ML, Levey AI. Localization of M(2) muscarinic acetylcholine receptor protein in cholinergic and non-cholinergic terminals in rat hippocampus. Neurosci Lett. 2000;284(3):182–6.

    Article  PubMed  CAS  Google Scholar 

  303. Shen KZ, Johnson SW. Presynaptic dopamine D2 and muscarine M3 receptors inhibit excitatory and inhibitory transmission to rat subthalamic neurones in vitro. J Physiol. 2000;525(Pt 2):331–41.

    Article  PubMed  CAS  Google Scholar 

  304. Vilaro MT, Palacios JM, Mengod G. Localization of m5 muscarinic receptor mRNA in rat brain examined by in situ hybridization histochemistry. Neurosci Lett. 1990;114(2):154–9.

    Article  PubMed  CAS  Google Scholar 

  305. Schambra UB, Mackensen GB, Stafford-Smith M, Haines DE, Schwinn DA. Neuron specific alpha-adrenergic receptor expression in human cerebellum: implications for emerging cerebellar roles in neurologic disease. Neuroscience. 2005;135(2):507–23.

    Article  PubMed  CAS  Google Scholar 

  306. Spreng M, Cotecchia S, Schenk F. A behavioral study of alpha-1b adrenergic receptor knockout mice: increased reaction to novelty and selectively reduced learning capacities. Neurobiol Learn Mem. 2001;75(2):214–29.

    Article  PubMed  CAS  Google Scholar 

  307. Watson M, McElligott JG. Cerebellar norepinephrine depletion and impaired acquisition of specific locomotor tasks in rats. Brain Res. 1984;296(1):129–38.

    Article  PubMed  CAS  Google Scholar 

  308. Arnsten AF. Adrenergic targets for the treatment of cognitive deficits in schizophrenia. Psychopharmacology (Berl). 2004;174(1):25–31.

    Article  CAS  Google Scholar 

  309. van Kammen DP, Kelley M. Dopamine and norepinephrine activity in schizophrenia. An integrative perspective. Schizophr Res. 1991;4(2):173–91.

    Article  PubMed  Google Scholar 

  310. Baldessarini RJ, Huston-Lyons D, Campbell A, Marsh E, Cohen BM. Do central antiadrenergic actions contribute to the atypical properties of clozapine? Br J Psychiatry Suppl. 1992;17:12–6.

    PubMed  Google Scholar 

  311. Woodward DJ, Moises HC, Waterhouse BD, Yeh HH, Cheun JE. The cerebellar norepinephrine system: inhibition, modulation, and gating. Prog Brain Res. 1991;88:331–41.

    Article  PubMed  CAS  Google Scholar 

  312. Birnbaum S, Gobeske KT, Auerbach J, Taylor JR, Arnsten AF. A role for norepinephrine in stress-induced cognitive deficits: alpha-1-adrenoceptor mediation in the prefrontal cortex. Biol Psychiatry. 1999;46(9):1266–74.

    Article  PubMed  CAS  Google Scholar 

  313. Arnsten AF, Mathew R, Ubriani R, Taylor JR, Li BM. Alpha-1 noradrenergic receptor stimulation impairs prefrontal cortical cognitive function. Biol Psychiatry. 1999;45(1):26–31.

    Article  PubMed  CAS  Google Scholar 

  314. Ferry B, Roozendaal B, McGaugh JL. Basolateral amygdala noradrenergic influences on memory storage are mediated by an interaction between beta- and alpha1-adrenoceptors. J Neurosci. 1999;19(12):5119–23.

    PubMed  CAS  Google Scholar 

  315. Ferry B, Roozendaal B, McGaugh JL. Involvement of alpha1-adrenoceptors in the basolateral amygdala in modulation of memory storage. Eur J Pharmacol. 1999;372(1):9–16.

    Article  PubMed  CAS  Google Scholar 

  316. Ferry B, Roozendaal B, McGaugh JL. Role of norepinephrine in mediating stress hormone regulation of long-term memory storage: a critical involvement of the amygdala. Biol Psychiatry. 1999;46(9):1140–52.

    Article  PubMed  CAS  Google Scholar 

  317. Marshall I, Burt RP, Chapple CR. Noradrenaline contractions of human prostate mediated by alpha 1A-(alpha 1c-) adrenoceptor subtype. Br J Pharmacol. 1995;115(5):781–6.

    Article  PubMed  CAS  Google Scholar 

  318. Furukawa K, Rosario DJ, Smith DJ, Chapple CR, Uchiyama T, Chess-Williams R. Alpha 1A-adrenoceptor-mediated contractile responses of the human vas deferens. Br J Pharmacol. 1995;116(1):1605–10.

    Article  PubMed  CAS  Google Scholar 

  319. Moriyama N, Nasu K, Takeuchi T, et al. Quantification and distribution of alpha 1-adrenoceptor subtype mRNAs in human vas deferens: comparison with those of epididymal and pelvic portions. Br J Pharmacol. 1997;122(6):1009–14.

    Article  PubMed  CAS  Google Scholar 

  320. Docherty JR. Subtypes of functional alpha1- and alpha2-adrenoceptors. Eur J Pharmacol. 1998;361(1):1–15.

    Article  PubMed  CAS  Google Scholar 

  321. Devauges V, Sara SJ. Activation of the noradrenergic system facilitates an attentional shift in the rat. Behav Brain Res. 1990;39(1):19–28.

    Article  PubMed  CAS  Google Scholar 

  322. Arnsten AF, Goldman-Rakic PS. Alpha 2-adrenergic mechanisms in prefrontal cortex associated with cognitive decline in aged nonhuman primates. Science. 1985;230(4731):1273–6.

    Article  PubMed  CAS  Google Scholar 

  323. Sara SJ, Dyon-Laurent C, Herve A. Novelty seeking behavior in the rat is dependent upon the integrity of the noradrenergic system. Brain Res Cogn Brain Res. 1995;2(3):181–7.

    Article  PubMed  CAS  Google Scholar 

  324. Lakhlani PP, MacMillan LB, Guo TZ, et al. Substitution of a mutant alpha2a-adrenergic receptor via “hit and run” gene targeting reveals the role of this subtype in sedative, analgesic, and anesthetic-sparing responses in vivo. Proc Natl Acad Sci USA. 1997;94(18):9950–5.

    Article  PubMed  CAS  Google Scholar 

  325. Yavich L, Lappalainen R, Sirvio J, Haapalinna A, MacDonald E. Alpha2-adrenergic control of dopamine overflow and metabolism in mouse striatum. Eur J Pharmacol. 1997;339(2–3):113–9.

    Article  PubMed  CAS  Google Scholar 

  326. Scheibner J, Trendelenburg AU, Hein L, Starke K. Alpha2-adrenoceptors modulating neuronal serotonin release: a study in alpha2-adrenoceptor subtype-deficient mice. Br J Pharmacol. 2001;132(4):925–33.

    Article  PubMed  CAS  Google Scholar 

  327. Kamibayashi T, Maze M. Clinical uses of alpha2-adrenergic agonists. Anesthesiology. 2000;93(5):1345–9.

    Article  PubMed  CAS  Google Scholar 

  328. Knaus AE, Muthig V, Schickinger S, et al. Alpha2-adrenoceptor subtypes–unexpected functions for receptors and ligands derived from gene-targeted mouse models. Neurochem Int. 2007;51(5):277–81.

    Article  PubMed  CAS  Google Scholar 

  329. Franowicz JS, Arnsten AF. Actions of alpha-2 noradrenergic agonists on spatial working memory and blood pressure in rhesus monkeys appear to be mediated by the same receptor subtype. Psychopharmacology (Berl). 2002;162(3):304–12.

    Article  CAS  Google Scholar 

  330. Franowicz JS, Arnsten AF. Treatment with the noradrenergic alpha-2 agonist clonidine, but not diazepam, improves spatial working memory in normal young rhesus monkeys. Neuropsychopharmacology. 1999;21(5):611–21.

    Article  PubMed  CAS  Google Scholar 

  331. Link RE, Desai K, Hein L, et al. Cardiovascular regulation in mice lacking alpha2-adrenergic receptor subtypes b and c. Science. 1996;273(5276):803–5.

    Article  PubMed  CAS  Google Scholar 

  332. Sallinen J, Haapalinna A, Viitamaa T, Kobilka BK, Scheinin M. Adrenergic alpha2C-receptors modulate the acoustic startle reflex, prepulse inhibition, and aggression in mice. J Neurosci. 1998;18(8):3035–42.

    PubMed  CAS  Google Scholar 

  333. Imaki J, Mae Y, Shimizu S, Ohno Y. Therapeutic potential of alpha2 adrenoceptor antagonism for antipsychotic-induced extrapyramidal motor disorders. Neurosci Lett. 2009;454(2):143–7.

    Article  PubMed  CAS  Google Scholar 

  334. Marcus MM, Wiker C, Franberg O, et al. Adjunctive alpha2-adrenoceptor blockade enhances the antipsychotic-like effect of risperidone and facilitates cortical dopaminergic and glutamatergic, NMDA receptor-mediated transmission. Int J Neuropsychopharmacol. 2010;13(7):891–903.

    Article  PubMed  CAS  Google Scholar 

  335. Kalkman HO, Loetscher E. alpha2C-Adrenoceptor blockade by clozapine and other antipsychotic drugs. Eur J Pharmacol. 2003;462(1–3):33–40.

    Article  PubMed  CAS  Google Scholar 

  336. Sallinen J, Link RE, Haapalinna A, et al. Genetic alteration of alpha 2C-adrenoceptor expression in mice: influence on locomotor, hypothermic, and neurochemical effects of dexmedetomidine, a subtype-nonselective alpha 2-adrenoceptor agonist. Mol Pharmacol. 1997;51(1):36–46.

    PubMed  CAS  Google Scholar 

  337. Andrade R. Serotonergic regulation of neuronal excitability in the prefrontal cortex. Neuropharmacology. 2011;61(3):382–6.

    Article  PubMed  CAS  Google Scholar 

  338. Hagan RM, Kilpatrick GJ, Tyers MB. Interactions between 5-HT3 receptors and cerebral dopamine function: implications for the treatment of schizophrenia and psychoactive substance abuse. Psychopharmacology (Berl). 1993;112(1 Suppl):S68–75.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Thelma Coutts for assistance with language. There were no sources of funding for preparation of the manuscript. The authors declare that over the past 3 years Dr. R. Musil has received research support from AstraZeneca and Janssen-Cilag, Dr. M. Riedel and Dr. K.-U. Kühn have received grants/research support from AstraZeneca and Pfizer and are speakers or on the advisory board of AstraZeneca, Pfizer, Bristol-Meyers-Squibb, Otsuka and Servier. All other authors state that they have no conflicts of interest to declare. All authors critically reviewed the final version. All authors contributed to and have approved the final manuscript; Anja Cerovecki and Richard Musil contributed equally.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Musil.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 425 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerovecki, A., Musil, R., Klimke, A. et al. Withdrawal Symptoms and Rebound Syndromes Associated with Switching and Discontinuing Atypical Antipsychotics: Theoretical Background and Practical Recommendations. CNS Drugs 27, 545–572 (2013). https://doi.org/10.1007/s40263-013-0079-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-013-0079-5

Keywords

Navigation