Skip to main content
Log in

Influence of Gestational Age and Body Weight on the Pharmacokinetics of Labetalol in Pregnancy

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objectives

Labetalol is frequently prescribed for the treatment of hypertension during pregnancy; however, the influence of pregnancy on labetalol pharmacokinetics is uncertain, with inconsistent findings reported by previous studies. This study examined the population pharmacokinetics of oral labetalol during and after pregnancy in women receiving labetalol for hypertension.

Methods

Data were collected from 57 women receiving the drug for hypertension from the 12th week of pregnancy through 12 weeks postpartum using a prospective, longitudinal design. A sparse sampling strategy guided collection of plasma samples. Samples were assayed for labetalol by high-performance liquid chromatography. Estimation of population pharmacokinetic parameters and covariate effects was performed by nonlinear mixed effects modeling using NONMEM. The final population model was validated by bootstrap analysis and visual predictive check. Simulations were performed with the final model to evaluate the appropriate body weight to guide labetalol dosing.

Results

Lean body weight (LBW) and gestational age, i.e. weeks of pregnancy, were identified as significantly influencing oral clearance (CL/F) of labetalol, with CL/F ranging from 1.4-fold greater than postpartum values at 12 weeks’ gestational age to 1.6-fold greater at 40 weeks. Doses adjusted for LBW provide more consistent drug exposure than doses adjusted for total body weight. The apparent volumes of distribution for the central compartment and at steady-state were 1.9-fold higher during pregnancy.

Conclusions

Gestational age and LBW impact the pharmacokinetics of labetalol during pregnancy and have clinical implications for adjusting labetalol doses in these women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Anderson GD. Pregnancy-induced changes in pharmacokinetics: a mechanistic-based approach. Clin Pharmacokinet. 2005;44(10):989–1008.

    Article  PubMed  CAS  Google Scholar 

  2. Ganrot PO. Variation of the concentrations of some plasma proteins in normal adults, in pregnant women and in newborns. Scand J Clin Lab Invest Suppl. 1972;124:83–8.

    Article  PubMed  CAS  Google Scholar 

  3. Laurell CB, Rannevik G. A comparison of plasma protein changes induced by danazol, pregnancy, and estrogens. J Clin Endocrinol Metab. 1979;49(5):719–25.

    Article  PubMed  CAS  Google Scholar 

  4. Little B. Water and electrolyte balance during pregnancy. Anesthesiology. 1965;26:400–8.

    Article  PubMed  CAS  Google Scholar 

  5. Tsutsumi K, Kotegawa T, Matsuki S, et al. The effect of pregnancy on cytochrome P4501A2, xanthine oxidase, and N-acetyltransferase activities in humans. Clin Pharmacol Ther. 2001;70(2):121–5.

    Article  PubMed  CAS  Google Scholar 

  6. Tracy TS, Venkataramanan R, Glover DD, et al. Temporal changes in drug metabolism (CYP1A2, CYP2D6 and CYP3A activity) during pregnancy. Am J Obstet Gynecol. 2005;192(2):633–9.

    Article  PubMed  CAS  Google Scholar 

  7. Dunlop W. Serial changes in renal haemodynamics during normal human pregnancy. Br J Obstet Gynaecol. 1981;88(1):1–9.

    Article  PubMed  CAS  Google Scholar 

  8. Langer O, Conway DL, Berkus MD, et al. A comparison of glyburide and insulin in women with gestational diabetes mellitus. N Engl J Med. 2000;343(16):1134–8.

    Article  PubMed  CAS  Google Scholar 

  9. Podymow T, August P. Update on the use of antihypertensive drugs in pregnancy. Hypertension. 2008;51(4):960–9.

    Article  PubMed  CAS  Google Scholar 

  10. Tran TA, Leppik IE, Blesi K, et al. Lamotrigine clearance during pregnancy. Neurology. 2002;59(2):251–5.

    Article  PubMed  CAS  Google Scholar 

  11. Report of the National High Blood Pressure Education Program Working Group on High Blood Pressure in Pregnancy. Am J Obstet Gynecol. 2000;183(1):S1–S22.

    Google Scholar 

  12. Seely EW, Ecker J. Clinical practice. Chronic hypertension in pregnancy. N Engl J Med. 2011;365(5):439–46.

    Article  PubMed  CAS  Google Scholar 

  13. Tuovinen S, Räikkönen K, Kajantie E, et al. Hypertensive disorders in pregnancy and cognitive decline in the offspring up to old age. Neurology. 2012;79(15):1578–82.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Andrade SE, Raebel MA, Brown J, et al. Outpatient use of cardiovascular drugs during pregnancy. Pharmacoepidemiol Drug Saf. 2008;17(3):240–7.

    Article  PubMed  Google Scholar 

  15. Abalos E, Duley L, Steyn DW, et al. Antihypertensive drug therapy for mild to moderate hypertension during pregnancy. Cochrane Database Syst Rev. 2007;(1):CD002252.

  16. Goa KL, Benfield P, Sorkin EM. Labetalol: A reappraisal of its pharmacology, pharmacokinetics and therapeutic use in hypertension and ischaemic heart disease. Drugs. 1989;37(5):583–627.

    Article  PubMed  CAS  Google Scholar 

  17. Nylund L, Lunell NO, Lewander R, et al. Labetalol for the treatment of hypertension in pregnancy. Pharmacokinetics and effects on the uteroplacental blood flow. Acta Obstet Gynecol Scand Suppl. 1984;118:71–3.

    Article  PubMed  CAS  Google Scholar 

  18. Rogers RC, Sibai BM, Whybrew WD. Labetalol pharmacokinetics in pregnancy-induced hypertension. Am J Obstet Gynecol. 1990;162(2):362–6.

    Article  PubMed  CAS  Google Scholar 

  19. Rubin PC, Butters L, Kelman AW, et al. Labetalol disposition and concentration–effect relationships during pregnancy. Br J Clin Pharmacol. 1983;15(4):465–70.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Saotome T, Minoura S, Terashi K, et al. Labetalol in hypertension during the third trimester of pregnancy: its antihypertensive effect and pharmacokinetic–dynamic analysis. J Clin Pharmacol. 1993;33(10):979–88.

    Article  PubMed  CAS  Google Scholar 

  21. D’Argenio D, Schumitzky A. ADAPT II user’s guide: pharmacokinetic/pharmacodynamic systems analysis software. Los Angeles: Biomedical Simulations Resource; 1997.

    Google Scholar 

  22. D’Argenio DZ. Optimal sampling times for pharmacokinetic experiments. J Pharmacokinet Biopharm. 1981;9(6):739–56.

    Article  PubMed  Google Scholar 

  23. Alton KB, Leitz F, Bariletto S, et al. High-performance liquid chromatographic assay for labetalol in human plasma using a PRP-1 column and fluorometric detection. J Chromatogr. 1984;311(2):319–28.

    Article  PubMed  CAS  Google Scholar 

  24. Reinard T, Jacobsen HJ. An inexpensive small volume equilibrium dialysis system for protein–ligand binding assays. Anal Biochem. 1989;176(1):157–60.

    Article  PubMed  CAS  Google Scholar 

  25. Jeong H, Choi S, Song JW, et al. Regulation of UDP-glucuronosyltransferase (UGT) 1A1 by progesterone and its impact on labetalol elimination. Xenobiotica. 2008;38(1):62–75.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  26. Beal SL. Ways to fit a PK model with some data below the quantification limit. J Pharmacokinet Pharmacodyn. 2001;28(5):481–504.

    Article  PubMed  CAS  Google Scholar 

  27. Janmahasatian S, Duffull SB, Ash S, et al. Quantification of lean bodyweight. Clin Pharmacokinet. 2005;44(10):1051–65.

    Article  PubMed  Google Scholar 

  28. DuBois D, DuBois EF. Clinical calorimetry: Tenth paper. A formula to estimate the approximate surface area if height and weight be known. Arch Intern Med. 1916;17:863–71.

    Article  CAS  Google Scholar 

  29. Keys A, Fidanza F, Karvonen MJ, et al. Indices of relative weight and obesity. J Chronic Dis. 1972;25(6):329–43.

    Article  PubMed  CAS  Google Scholar 

  30. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16(1):31–41.

    Article  PubMed  CAS  Google Scholar 

  31. Parke J, Holford NH, Charles BG. A procedure for generating bootstrap samples for the validation of nonlinear mixed-effects population models. Comput Methods Programs Biomed. 1999;59(1):19–29.

    Article  PubMed  CAS  Google Scholar 

  32. Yano Y, Beal SL, Sheiner LB. Evaluating pharmacokinetic/pharmacodynamic models using the posterior predictive check. J Pharmacokinet Pharmacodyn. 2001;28(2):171–92.

    Article  PubMed  CAS  Google Scholar 

  33. Donnelly R, Macphee GJ. Clinical pharmacokinetics and kinetic–dynamic relationships of dilevalol and labetalol. Clin Pharmacokinet. 1991;21(2):95–109.

    Article  PubMed  CAS  Google Scholar 

  34. Lalonde RL, O’Rear TL, Wainer IW, et al. Labetalol pharmacokinetics and pharmacodynamics: evidence of stereoselective disposition. Clin Pharmacol Ther. 1990;48(5):509–19.

    Article  PubMed  CAS  Google Scholar 

  35. Carvalho TM, Cavalli ReC, Cunha SP, et al. Influence of gestational diabetes mellitus on the stereoselective kinetic disposition and metabolism of labetalol in hypertensive patients. Eur J Clin Pharmacol. 2011;67(1):55–61.

    Article  PubMed  CAS  Google Scholar 

  36. Johnson JA, Akers WS, Herring VL, et al. Gender differences in labetalol kinetics: importance of determining stereoisomer kinetics for racemic drugs. Pharmacotherapy. 2000;20(6):622–8.

    Article  PubMed  CAS  Google Scholar 

  37. McNeil JJ, Anderson AE, Louis WJ, et al. Pharmacokinetics and pharmacodynamic studies of labetalol in hypertensive subjects. Br J Clin Pharmacol. 1979;8(Suppl 2):157S–61S.

    PubMed Central  PubMed  CAS  Google Scholar 

  38. Martin LE, Hopkins R, Bland R. Metabolism of labetalol by animals and man. Br J Clin Pharmacol. 1976;3(4 Suppl 3):695–710.

    PubMed  CAS  Google Scholar 

  39. Wilkinson GR, Shand DG. Commentary: a physiological approach to hepatic drug clearance. Clin Pharmacol Ther. 1975;18(4):377–90.

    PubMed  CAS  Google Scholar 

  40. Martinez-Gomez MA, Sagrado S, Villanueva-Camanas RM, et al. Characterization of basic drug-human serum protein interactions by capillary electrophoresis. Electrophoresis. 2006;27(17):3410–9.

    Article  PubMed  CAS  Google Scholar 

  41. Desoye G, Schweditsch MO, Pfeiffer KP, et al. Correlation of hormones with lipid and lipoprotein levels during normal pregnancy and postpartum. J Clin Endocrinol Metab. 1987;64(4):704–12.

    Article  PubMed  CAS  Google Scholar 

  42. Della Torre M, Hibbard JU, Jeong H, et al. Betamethasone in pregnancy: influence of maternal body weight and multiple gestation on pharmacokinetics. Am J Obstet Gynecol. 2010;203(3):254.e1–12.

    Google Scholar 

  43. Fischer JH, Sarto GE, Habibi M, et al. Influence of body weight, ethnicity, oral contraceptives, and pregnancy on the pharmacokinetics of azithromycin in women of childbearing age. Antimicrob Agents Chemother. 2012;56(2):715–24.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  44. Anderson BJ, Holford NH. Mechanism-based concepts of size and maturity in pharmacokinetics. Annu Rev Pharmacol Toxicol. 2008;48:303–32.

    Article  PubMed  CAS  Google Scholar 

  45. Coetzee JF. Allometric or lean body mass scaling of propofol pharmacokinetics: towards simplifying parameter sets for target-controlled infusions. Clin Pharmacokinet. 2012;51(3):137–45.

    Article  PubMed  CAS  Google Scholar 

  46. Han PY, Duffull SB, Kirkpatrick CM, et al. Dosing in obesity: a simple solution to a big problem. Clin Pharmacol Ther. 2007;82(5):505–8.

    Article  PubMed  CAS  Google Scholar 

  47. Brittain RT, Drew GM, Levy GP. The alpha- and beta-adrenoceptor blocking potencies of labetalol and its individual stereoisomers in anaesthetized dogs and in isolated tissues. Br J Pharmacol. 1982;77(1):105–14.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Department of Health and Human Services contract 223-03-8726 from the Office of Women’s Health, US FDA. All authors have no conflicts of interest that are directly relevant to the content of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James H. Fischer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, J.H., Sarto, G.E., Hardman, J. et al. Influence of Gestational Age and Body Weight on the Pharmacokinetics of Labetalol in Pregnancy. Clin Pharmacokinet 53, 373–383 (2014). https://doi.org/10.1007/s40262-013-0123-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-013-0123-0

Keywords

Navigation