Skip to main content

Advertisement

Log in

Central Nervous System Infection by HIV-1: Special Emphasis to NeuroAIDS in India

  • Review
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

Advent of combinatorial antiretroviral therapy has widely declined the number of HIV related deaths. It has however resulted in an increase in number of people living with HIV, and their morbidity in terms of their compromised brain functions, thereby worsening the overall scenario in the form of HIV associated neurocognitive impairment that are studied under the umbrella of neuroAIDS. Productively infected macrophages “hijack” brain parenchyma, resulting in slow neurodegeneration especially in the basal ganglia, hippocampus, prefrontal cortex and white matter. Although not directly infected, neurons undergo apoptosis via different pathways as discussed in the review. In addition, more devastating is the condition when HIV synergizes with drugs of abuse and brings in oxidative stress, elevation of inflammatory cytokines and increased calcium waves ultimately leading to augmented excitotoxicity. Mother to child transmission has been another important risk factor in the field of HIV rendering the neonates afflicted with severe neurodevelopmental delays and reduced immune response. Increase in several cytokines and other molecules have been promising in early diagnosis of the syndrome, but search for a biomarker is still on. In this review, we have outlined the recent developments in the field, practical challenges in neuroAIDS research and possible future directions that may help in better management of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Global report: UNAIDS report on the global AIDS epidemic, 2010

  2. Department of AIDS Control, National AIDS Control Organisation, Ministry of Health & Family Welfare, Annual Report 2010–2011

  3. Simoes EA, Babu PG, John TJ et al (1987) Evidence for HTLV-III infection in prostitutes in Tamil Nadu. Indian J Med Res 85:335–338

    PubMed  CAS  Google Scholar 

  4. Antinori A, Arendt G, Becker JT et al (2007) Updated research nosology for HIV-associated neurocognitive disorders. Neurology 69:1789–1799

    PubMed  CAS  Google Scholar 

  5. Kaplan JE, Hanson D, Dworkin MS et al (2000) Epidemiology of Human Immunodeficiency Virus—associated opportunistic infections in the United States in the era of highly active antiretroviral therapy. Clin Infect Dis 30:S5–S14

    PubMed  Google Scholar 

  6. Teja VD, Talasila SR, Vemu L et al (2005) Neurologic manifestations of HIV infection: an Indian hospital-based study. AIDS Read 15(3):139–143

    PubMed  Google Scholar 

  7. Deshpande AK, Patnaik MM (2005) Nonopportunistic neurologic manifestations of the human immunodeficiency virus: an Indian study. MedGenMed 7(4):2

    PubMed  Google Scholar 

  8. Xu J, Ikezu T (2009) The comorbidity of HIV-associated neurocognitive disorders and Alzheimer’s disease: a foreseeable medical challenge in post-HAART era. J Neuroimmune Pharmacol 4(2):200–212

    PubMed  CAS  Google Scholar 

  9. Gray F, Scaravilli F, Everall I et al (1996) Neuropathology of early HIV-1 infection. Brain Pathol 6:1–15

    PubMed  CAS  Google Scholar 

  10. Valcour V, Shikuma C, Shiramizu B et al (2004) Higher frequency of dementia in older HIV-1 individuals: the Hawaii aging with HIV-1 cohort. Neurology 63(5):822–827

    PubMed  CAS  Google Scholar 

  11. Bassel C, Rourke SB, Halman MH et al (2002) Working memory performance predicts subjective cognitive complaints in HIV infection. Neuropsychology 16(3):400–410

    PubMed  Google Scholar 

  12. Gorman AA, Foley JM, Ettenhofer ML et al (2009) Functional consequences of HIV-associated neuropsychological impairment. Neuropsychol Rev 19(2):186–203

    PubMed  Google Scholar 

  13. Maj M, Satz P, Janssen R et al (1994) WHO Neuropsychiatric AIDS study, cross-sectional phase II. Neuropsychological and neurological findings. Arch Gen Psychiatry 51(1):51–61

    PubMed  CAS  Google Scholar 

  14. Rourke SB, Halman MH, Bassel C et al (1999) Neurocognitive complaints in HIV infection and their relationship to depressive symptoms and neuropsychological functioning. J Clin Exp Neuropsychol 21(6):737–756

    PubMed  CAS  Google Scholar 

  15. Haase AT (1986) Pathogenesis of lentivirus infections. Nature 322:130–136

    PubMed  CAS  Google Scholar 

  16. Peluso R, Haase A, Stowring L et al (1985) A Trojon horse mechanism for the spread of visna virus in monocytes. Virology 147:231–236

    PubMed  CAS  Google Scholar 

  17. Simmons G, Reeves JD, McKnight A et al (1998) CXCR4 as a functional coreceptor for human immunodeficiency virus type 1 infection of primary macrophages. J Virol 72:8453–8457

    PubMed  CAS  Google Scholar 

  18. Hibbitts S, Reeves JD, Simmons G et al (1999) Coreceptor ligand inhibition of fetal brain cell infection by HIV type 1. AIDS Res Hum Retroviruses 15:989–1000

    PubMed  CAS  Google Scholar 

  19. Petito CK, Cash KS (1992) Blood-brain barrier abnormalities in the acquired immunodeficiency syndrome: immunohistochemical localization of serum proteins in postmortem brain. Ann Neurol 32:658–666

    PubMed  CAS  Google Scholar 

  20. Moses AV, Nelson JA (1994) HIV infection of human brain capillary endothelial cells: implications for AIDS dementia. Adv Neuroimmunol 4:239–247

    PubMed  CAS  Google Scholar 

  21. Gras G, Kaul M (2010) Molecular mechanisms of neuroinvasion by monocytes-macrophages in HIV-1 infection. Retrovirology 7:30–41

    PubMed  Google Scholar 

  22. Minagar A, Shapshak P, Fujimura R et al (2002) The role of macrophage/microglia and astrocytes in the pathogenesis of three neurologic disorders: HIV-associated dementia, Alzheimer disease, and multiple sclerosis. J Neurol Sci 202:13–23

    PubMed  CAS  Google Scholar 

  23. Dhillon NK, Williams R, Callen S et al (2008) Roles of MCP-1 in development of HIV-dementia. Front Biosci 13:3913–3918

    PubMed  CAS  Google Scholar 

  24. Toborek M, Lee YW, Flora G et al (2005) Mechanisms of the blood-brain barrier disruption in HIV-1 infection. Cell Mol Neurobiol 25:181–199

    PubMed  Google Scholar 

  25. Sporer B, Koedel U, Paul R et al (2000) Human immunodeficiency virus type-1 Nef protein induces blood–brain barrier disruption in the rat: role of matrix metalloproteinase-9. J Neuroimmunol 102:125–130

    PubMed  CAS  Google Scholar 

  26. Williams KC, Corey S, Westmoreland SV et al (2001) Perivascular macrophages are the primary cell type productively infected by simian immunodeficiency virus in the brains of macaques: implications for the neuropathogenesis of AIDS. J Exp Med 193:905–915

    PubMed  CAS  Google Scholar 

  27. Cosenza MA, Zhao ML, Si Q et al (2002) Human brain parenchymal microglia express CD14 and CD45 and are productively infected by HIV-1 in HIV-1 encephalitis. Brain Pathol 12:442–455

    PubMed  CAS  Google Scholar 

  28. Gorry PR, Ong C, Thorpe J et al (2003) Astrocyte infection by HIV-1: mechanisms of restricted virus replication, and role in the pathogenesis of HIV-1-associated dementia. Curr HIV Res 1:463–473

    PubMed  CAS  Google Scholar 

  29. Shi B, Girolami UD, He J et al (1996) Apoptosis induced by HIV-1 infection of the central nervous system. J Clin Investig 98:1979–1990

    PubMed  CAS  Google Scholar 

  30. Xu Y, Kulkosky J, Acheampong E et al (2004) HIV-1-mediated apoptosis of neuronal cells: proximal molecular mechanisms of HIV-1-induced encephalopathy. PNAS 101(18):7070–7075

    PubMed  CAS  Google Scholar 

  31. Levi G, Patrizio M, Bernardo A et al (1993) Human immunodeficiency virus coat protein gp120 inhibits the beta-adrenergic regulation of astroglial and microglial functions. PNAS 90(4):1541–1545

    PubMed  CAS  Google Scholar 

  32. Benos DJ, Hahn BH, Shaw GM et al (1994) gp120-mediated alterations in astrocyte ion transport. Adv Neuroimmunol 4(3):175–179

    PubMed  CAS  Google Scholar 

  33. Conant K, Demo AG, Nath A et al (1998) Induction of monocyte chemoattractant protein-1 in HIV-1 Tat-stimulated astrocytes and elevation in AIDS dementia. PNAS 95(6):3117–3121

    PubMed  CAS  Google Scholar 

  34. Cinque P, Vago L, Mengozzi M et al (1998) Elevated cerebrospinal fluid levels of monocyte chemotactic protein-1 correlate with HIV-1 encephalitis and local viral replication. Aids 12(11):1327–1332

    PubMed  CAS  Google Scholar 

  35. Rumbaugh J, Turchan-Cholewo J, Galey D et al (2006) Interaction of HIV Tat and matrix metalloproteinase in HIV neuropathogenesis: a new host defense mechanism. FASEB J 20(10):1736–1738

    PubMed  CAS  Google Scholar 

  36. Haughey NJ, Mattson MP (2002) Calcium dysregulation and neuronal apoptosis by the HIV-1 proteins Tat and gp120. J Acquir Immune Defic Syndr 31(Suppl 2):S55–S61

    PubMed  CAS  Google Scholar 

  37. Eugenin EA, King JE, Nath A et al (2007) HIV-tat induces formation of an LRP-PSD-95-NMDAR-nNOS complex that promotes apoptosis in neurons and astrocytes. PNAS 104(9):3438–3443

    PubMed  CAS  Google Scholar 

  38. Qi M, Aiken C (2008) Nef enhance HIV-1 infectivity via association with the virus assembly complex. Virology 373(2):287–297

    PubMed  CAS  Google Scholar 

  39. Levy DN, Refaeli Y, Weiner DB (1995) Extracellular Vpr protein increases cellular permissiveness to human immunodeficiency virus replication and reactivates virus from latency. J Virol 69(2):1243–1252

    PubMed  CAS  Google Scholar 

  40. Patel CA, Mukhtar M, Pomerantz RJ (2000) Human immunodeficiency virus type 1 Vpr induces apoptosis in human neuronal cells. J Virol 74:9717–9726

    PubMed  CAS  Google Scholar 

  41. Lannuzel A, Lledo PM, Lamghitnia HO et al (1995) HIV-1 envelope proteins gp120 and gp160 potentiate NMDA-induced [Ca2+]i increase, alter [Ca2+]i homeostasis and induce neurotoxicity in human embryonic neurons. Eur J Neurosci 7(11):2285–2293

    PubMed  CAS  Google Scholar 

  42. Toggas SM, Masliah E, Mucke L et al (1996) Prevention of HIV-1 gp120-induced neuronal damage in the central nervous system of transgenic mice by the NMDA receptor antagonist memantine. Brain Res 706(2):303–307

    PubMed  CAS  Google Scholar 

  43. Epstein LG, Gelbard HA (1999) HIV-1-induced neuronal injury in the developing brain. J Leukoc Biol 65(4):453–457

    PubMed  CAS  Google Scholar 

  44. Okamoto S, Kang YJ, Brechtel CW et al (2007) HIV/gp120 decreases adult neural progenitor cell proliferation via checkpoint kinase-mediated cell-cycle withdrawal and G1 arrest. Cell Stem Cell 1(2):230–236

    PubMed  CAS  Google Scholar 

  45. Krathwohl MD, Kaiser JL (2004) HIV-1 promotes quiescence in human neural progenitor cells. J Infect Dis 190(2):216–226

    PubMed  CAS  Google Scholar 

  46. Mishra M, Taneja M, Malik S et al (2010) Human immunodeficiency virus type 1 Tat modulates proliferation and differentiation of human neural precursor cells: implication in neuroAIDS. J Neurovirol 16(5):355–367

    PubMed  CAS  Google Scholar 

  47. Geretti AM (2006) HIV-1 subtypes: epidemiology and significance for HIV management. Curr Opin Infect Dis 19:1–7

    PubMed  Google Scholar 

  48. Gurtlerr LG, Zekeng L, Tsague JM et al (1996) HIV-1 subtype O: epidemiology, pathogenesis, diagnosis and perspectives of the evolution of HIV. Arch Virol Suppl 11:195–202

    Google Scholar 

  49. Simon F, Mauclere P, Roques P et al (1998) Identification of a new human immune-deficiency virus type 1 distinct from group M and group O. Nat Med 4(9):1032–1037

    PubMed  CAS  Google Scholar 

  50. Hu D, DonderoTJ, Mastro TD et al (1998) In: Wormser GP (ed) Global and molecular epidemiology of HIV. pp 27–40

  51. Wainberg MA (2004) HIV-1 subtype distribution and the problem of drug resistance. AIDS 18(Suppl 3):S63–S68

    Google Scholar 

  52. Siddappa NB, Dash PK, Mahadevan A et al (2004) Identification of subtype C human immunodeficiency virus type 1 by subtype-specific PCR and its use in the characterization of viruses circulating in the southern parts of India. J Clin Microbiol 42(6):2742–2751

    PubMed  CAS  Google Scholar 

  53. Tripathi SP, Kulkarni SS, Jadhav SD et al (2005) Subtype B and subtype C HIV type 1 recombinants in the northeastern state of Manipur, India. AIDS Res Hum Retroviruses 21(2):152–157

    Google Scholar 

  54. Gupta JD, Satishchandra P, Gopukumar K et al (2007) Neuropsychological deficits in human immunodeficiency virus type 1 clade C-seropositive adults from South India. J Neurovirol 13(3):195–202

    PubMed  Google Scholar 

  55. Riedel D, Ghate M, Nene M et al (2006) Screening for HIV dementia in an HIV-infected population in India. J Neurovirol 12(1):34–38

    PubMed  CAS  Google Scholar 

  56. Ranga U, Shankarappa R, Siddappa NB et al (2004) Tat protein of human immunodeficiency virus type 1 subtype C strains is a defective chemokine. J Virol 78(5):2586–2590

    PubMed  CAS  Google Scholar 

  57. Li W, Huang Y, Reid R et al (2008) NMDA receptor activation by HIV-Tat protein is clade dependent. J Neurosci 28(47):12190–12198

    PubMed  CAS  Google Scholar 

  58. Campbell GR, Watkins JD, Singh KK et al (2007) Human immunodeficiency virus type 1 subtype C Tat fails to induce intracellular calcium flux and induces reduced tumor necrosis factor production from monocytes. J Virol 81(11):5919–5928

    PubMed  CAS  Google Scholar 

  59. Mishra M, Vetrivel S, Siddappa NB et al (2008) Clade-specific differences in neurotoxicity of human immunodeficiency virus-1 B and C Tat of human neurons: significance of dicysteine C30C31 motif. Ann Neurol 63(3):366–376

    PubMed  CAS  Google Scholar 

  60. Rao VR, Sas AR, Eugenin EA et al (2008) HIV-1 clade-specific differences in the induction of neuropathogenesis. J Neurosci 28(40):10010–10016

    PubMed  CAS  Google Scholar 

  61. Campbell GR, Loret EP, Spector SA et al (2010) HIV-1 clade B Tat, but not clade C Tat, increases X4 HIV-1 entry into resting but not activated CD4+ T cells. J Biol Chem 285(3):1681–1691

    PubMed  CAS  Google Scholar 

  62. Wong JK, Campbell GR, Spector SA et al (2010) Differential induction of interleukin-10 in monocytes by HIV-1 clade B and clade C Tat proteins. J Biol Chem 285(24):18319–18325

    PubMed  CAS  Google Scholar 

  63. Gandhi N, Saiyed Z, Thangavel S et al (2009) Differential effects of HIV type 1 clade B and clade C Tat protein on expression of proinflammatory and antiinflammatory cytokines by primary monocytes. AIDS Res Hum Retroviruses 25(7):691–699

    PubMed  CAS  Google Scholar 

  64. Samikkannu T, Rao KV, Gandhi N et al (2010) Human immunodeficiency virus type 1 clade B and C Tat differentially induce indoleamine 2,3-dioxygenase and serotonin in immature dendritic cells: implications for neuroAIDS. J Neurovirol 16(4):255–263

    PubMed  CAS  Google Scholar 

  65. Nath A, Hauser KF, Wojna V et al (2002) Molecular basis for interactions of HIV and drugs of abuse. J Acquir Immune Defic Syndr 31(Suppl 2):S62–S69

    PubMed  CAS  Google Scholar 

  66. Solomon SS, Hawcroft CS, Narasimhan P et al (2008) Comorbidities among HIV-infected injection drug users in Chennai, India. Indian J Med Res 127:447–452

    PubMed  CAS  Google Scholar 

  67. Hauser KF, Hahn YK, Adjan VV et al (2009) HIV-1 Tat and morphine have interactive effects on oligodendrocyte survival and morphology. Glia 57(2):194–206

    PubMed  Google Scholar 

  68. Hauser KF, El-Hage N, Buch S et al (2005) Molecular targets of opiate drug abuse in neuroAIDS. Neurotox Res 8(1–2):63–80

    PubMed  CAS  Google Scholar 

  69. El-Hage N, Gurwell JA, Singh IN et al (2005) Synergistic increases in intracellular Ca2+, and the release of MCP-1, RANTES, and IL-6 by astrocytes treated with opiates and HIV-1 Tat. Glia 50(2):91–106

    PubMed  Google Scholar 

  70. El-Hage N, Wu G, Wang J et al (2006) HIV-1 Tat and opiate-induced changes in astrocytes promote chemotaxis of microglia through the expression of MCP-1 and alternative chemokines. Glia 53(2):132–146

    PubMed  Google Scholar 

  71. Mahajan SD, Aalinkeel R, Reynolds JL et al (2005) Morphine exacerbates HIV-1 viral protein gp120 induced modulation of chemokine gene expression in U373 astrocytoma cells. Curr HIV Res 3(3):277–288

    PubMed  CAS  Google Scholar 

  72. El-Hage N, Bruce-Keller AJ, Yakovleva T et al (2008) Morphine exacerbates HIV-1 Tat-induced cytokine production in astrocytes through convergent effects on [Ca(2+)](i), NF-kappaB trafficking and transcription. PLoS One 3(12):e4093

    PubMed  Google Scholar 

  73. Peteron PK, Sharp BM, Gekker G et al (1990) Morphine promotes the growth of HIV-1 in human peripheral blood mononuclear cell cocultures. AIDS 4(9):869–873

    Google Scholar 

  74. Bagasra O, Pomerantz RJ (1993) Human immunodeficiency virus type 1 replication in peripheral blood mononuclear cells in the presence of cocaine. J Infect Dis 168(5):1157–1164

    PubMed  CAS  Google Scholar 

  75. Roth MD, Tashkin DP, Choi R et al (2002) Cocaine enhances human immunodeficiency virus replication in a model of severe combined immunodeficient mice implanted with human peripheral blood leukocytes. J Infect Dis 185(5):701–705

    PubMed  CAS  Google Scholar 

  76. Fitting S, Xu R, Bull C et al (2010) Interactive comorbidity between opioid drug abuse and HIV-1 Tat: chronic exposure augments spine loss and sublethal dendritic pathology in striatal neurons. Am J Pathol 177(3):1397–1410

    PubMed  CAS  Google Scholar 

  77. Khurdayan VK, Buch S, El-Hage N et al (2004) Preferential vulnerability of astroglia and glial precursors to combined opioid and HIV-1 Tat exposure in vitro. Eur J Neurosci 19(12):3171–3182

    PubMed  Google Scholar 

  78. Turchan JC, Dimayuga FO, Gupta S et al (2009) Morphine and HIV-Tat increase microglial-free radical production and oxidative stress: possible role in cytokine regulation. J Neurochem 108(1):202–215

    Google Scholar 

  79. Santos A, Cremades R, Rodriguez JC et al (2008) Mycobacterium peregrinum: bactericidal activity of antibiotics alone and in combination. J Infect Chemother 14(3):262–263

    PubMed  CAS  Google Scholar 

  80. Pitcher J, Shimizu S, Burbassi S et al (2010) Disruption of neuronal CXCR4 function by opioids: preliminary evidence of ferritin heavy chain as a potential etiological agent in neuroAIDS. J Neuroimmunol 224(1–2):66–71

    PubMed  CAS  Google Scholar 

  81. Avdoshina V, Biggio F, Palchik G et al (2010) Morphine induces the release of CCL5 from astrocytes: potential neuroprotective mechanism against the HIV protein gp120. Glia 58(13):1630–1639

    PubMed  Google Scholar 

  82. Li Y, Wang X, Tian S et al (2002) Methadone enhances human immunodeficiency virus infection of human immune cells. J Infect Dis 185(1):118–122

    PubMed  CAS  Google Scholar 

  83. Potula R, Persidsky Y (2008) Adding fuel to the fire: methamphetamine enhances HIV infection. Am J Pathol 172(6):1467–1470

    PubMed  CAS  Google Scholar 

  84. Nair MP, Mahajan SD, Schwartz SA et al (2005) Cocaine modulates dendritic cell-specific C type intercellular adhesion molecule-3-grabbing nonintegrin expression by dendritic cells in HIV-1 patients. J Immunol 174(11):6617–6626

    PubMed  CAS  Google Scholar 

  85. Chana G, Everall IP, Crews L et al (2006) Cognitive deficits and degeneration of interneurons in HIV+ methamphetamine users. Neurology 67(8):1486–1489

    PubMed  CAS  Google Scholar 

  86. Wilson JM, Kalasinsky KS, Levey AI et al (1996) Striatal dopamine nerve terminal markers in human, chronic methamphetamine users. Nat Med 2(6):699–703

    PubMed  CAS  Google Scholar 

  87. Wilson JM, Levey AI, Bergeron C et al (1996) Striatal dopamine, dopamine transporter, and vesicular monoamine transporter in chronic cocaine users. Ann Neurol 40(3):428–439

    PubMed  CAS  Google Scholar 

  88. Villemagne V, Yuan J, Wong DF et al (1998) Brain dopamine neurotoxicity in baboons treated with doses of methamphetamine comparable to those recreationally abused by humans: evidence from [11C] WIN-35, 428 positron emission tomography studies and direct in vitro determinations. J Neurosci 18(1):419–427

    PubMed  CAS  Google Scholar 

  89. Turchan J, Anderson C, Hauser KF et al (2001) Estrogen protects against the synergistic toxicity by HIV proteins, methamphetamine and cocaine. BMC Neurosci 2:3

    PubMed  CAS  Google Scholar 

  90. Brown JM, Yamamoto BK (2003) Effects of amphetamines on mitochondrial function: role of free radicals and oxidative stress. Pharmacol Ther 99:45–53

    PubMed  CAS  Google Scholar 

  91. Keller MA, Venkatraman TN, Thomas A et al (2004) Altered neurometabolite development in HIV-infected children: correlation with neuropsychological tests. Neurology 62(10):1810–1817

    PubMed  CAS  Google Scholar 

  92. Boivin MJ, Green SD, Davies AG et al (1995) A preliminary evaluation of the cognitive and motor effects of pediatric HIV infection in Zairian children. Health Psychol 14(1):13–21

    PubMed  CAS  Google Scholar 

  93. Dollard SC, James HJ, Sharer LR et al (1995) Activation of nuclear factor kappa B in brains from children with HIV-1 encephalitis. Neuropathol Appl Neurobiol 21(6):518–528

    PubMed  CAS  Google Scholar 

  94. NACO news Oct–Dec 2006. Volume 2, issue 4

  95. Spector SA (2001) Mother-to-infant transmission of HIV-1: the placenta fights back. J Clin Invest 107(3):267–269

    PubMed  CAS  Google Scholar 

  96. Van AR, Harrington PR, Dow A et al (2007) Neurologic and neuro developmental manifestations of pediatric HIV/AIDS: a global perspective. Eur J Paediatr Neurol 11(1):1–9

    Google Scholar 

  97. Kamat A, Ravi V, Desai A et al (2009) Estimation of virological and immunological parameters in subjects from South India infected with human immunodeficiency virus type 1 clade C and correlation of findings with occurrence of neurological disease. J Neurovirol 15(1):25–35

    PubMed  CAS  Google Scholar 

  98. Huang JS, Letendre S, Marquie-Beck J et al (2007) Low CSF leptin levels are associated with worse learning and memory performance in HIV-infected men. J Neuroimmune Pharmacol 2:352–358

    PubMed  CAS  Google Scholar 

  99. Haughey NJ, Cutler RG, Tamara A et al (2004) Perturbation of sphingolipid metabolism and ceramide production in HIV-dementia. Ann Neurol 55(2):257–267

    PubMed  CAS  Google Scholar 

  100. Roberts TK, Eugenin EA, Morgello S et al (2010) PrPC, the Cellular isoform of the human prion protein, is a novel biomarker of HIV-associated neurocognitive impairment and mediates neuroinflammation. Am J Pathol 176(6):2819–2830

    Google Scholar 

  101. Rezk NL, Tidwell RR, Kashuba AD (2003) Simultaneous determination of six HIV nucleoside analogue reverse transcriptase inhibitors and nevirapine by liquid chromatography with ultraviolet absorbance detection. J Chromatogr 791:137–147

    CAS  Google Scholar 

  102. De-Clercq E (2004) Non-nucleoside reverse transcriptase inhibitors (NNRTIs): past, present, and future. Chem Biodivers 1:44–64

    PubMed  CAS  Google Scholar 

  103. Lalezari JP, Henry K, O’Hearn M et al (2003) Enfuvirtide, an HIV-1 fusion inhibitor, for drug-resistant HIV infection in North and South America. N Engl J Med 348:2175–2185

    PubMed  CAS  Google Scholar 

  104. Yost R, Pasquale TR, Sahloff EG (2009) Maraviroc: a coreceptor CCR5 antagonist for management of HIV infection. Am J Health Syst Pharm 66:715–726

    PubMed  CAS  Google Scholar 

  105. Barry M, Gibbons S, Back D et al (1997) Protease inhibitors in patients with HIV disease. Clinically important pharmacokinetic considerations. Clin Pharmacokinet 32:194–209

    PubMed  CAS  Google Scholar 

  106. Serrao E, Odde S, Ramkumar K et al (2009) Raltegravir, elvitegravir, and metoogravir: the birth of “me-too” HIV-1 integrase inhibitors. Retrovirology 6:25

    PubMed  Google Scholar 

  107. Department of AIDS Control Ministry of Health and Family Welfare Government of India. Annual Report 2008–2009

  108. Hogg R, Lima V, Sterne JA et al (2008) Life expectancy of individuals on combination antiretroviral therapy in high-income countries: a collaborative analysis of 14 cohort studies. Lancet 372:293–299

    Google Scholar 

  109. Harrison KM, Song R, Zhang X (2010) Life expectancy after HIV diagnosis based on national HIV surveillance data from 25 states, United States. J Acquir Immune Defic Syndr 53:124–130

    PubMed  Google Scholar 

  110. Liner KJ, Hall CD, Robertson KR et al (2008) Effects of antiretroviral therapy on cognitive impairment. Curr HIV/AIDS Rep 5(2):64–71

    PubMed  Google Scholar 

  111. Sinha S, Mathews T, Arunodaya GR et al (2004) HIV-1 clade-C-associated “ALS”-like disorder: first report from India. J Neurol Sci 224(1–2):97–100

    PubMed  Google Scholar 

  112. McArthur JC, Brew BJ, Nath A et al (2005) Neurological complications of HIV infection. Lancet Neurol 4(9):543–555

    PubMed  Google Scholar 

  113. Heseltine PN, Goodkin K, Atkinson JH et al (1998) Randomized double-blind placebo-controlled trial of peptide T for HIV-associated cognitive impairment. Arch Neurol 55(1):41–51

    PubMed  CAS  Google Scholar 

  114. Lipton SA, Chen HS (2004) Paradigm shift in neuroprotective drug development: clinically tolerated NMDA receptor inhibition by memantine. Cell Death Differ 11(1):18–20

    PubMed  CAS  Google Scholar 

  115. Evans SR, Yeh TM, Sacktor N et al (2007) Selegiline transdermal system (STS) for HIV-associated cognitive impairment: open-label report of ACTG 5090. HIV Clin Trials 8(6):437–446

    PubMed  Google Scholar 

  116. Eggert D, Dash PK, Gorantla S et al (2010) Neuroprotective activities of CEP-1347 in models of neuroAIDS. J Immunol 184(2):746–756

    PubMed  CAS  Google Scholar 

  117. Horberg MA, Silverberg MJ, Hurley LB et al (2008) Effects of depression and selective serotonin reuptake inhibitor use on adherence to highly active antiretroviral therapy and on clinical outcomes in HIV-infected patients. J Acquir Immune Defic Syndr 47:384–390

    PubMed  CAS  Google Scholar 

  118. Everall IP, Bell C, Mallory M et al (2002) Lithium ameliorates HIV-gp120-mediated neurotoxicity. Mol Cell Neurosci 21:493–501

    PubMed  CAS  Google Scholar 

  119. Smith SM (2005) Valproic acid and HIV-1 latency: beyond the sound bite. Retrovirology 2:56

    PubMed  Google Scholar 

  120. Letendre S, Woods S, Ellis R et al (2006) Lithium improves HIV-associated neurocognitive impairment. AIDS 20:1885–1888

    PubMed  CAS  Google Scholar 

  121. Kaul M, Lipton SA (2005) Experimental and potential future therapeutic approaches for HIV-1 associated dementia targeting receptors for chemokines, glutamate and erythropoietin. Neurotox Res 8(1–2):167–186

    PubMed  CAS  Google Scholar 

  122. Dou H, Grotepas CB, McMillan JM et al (2009) Macrophage delivery of nanoformulated antiretroviral drug to the brain in a murine model of neuroAIDS. J Immunol 183(1):661–669

    PubMed  CAS  Google Scholar 

  123. Saiyed ZM, Gandhi NH, Nair MP et al (2010) Magnetic nanoformulation of azidothymidine 5′-triphosphate for targeted delivery across the blood-brain barrier. Int J Nanomed 5:157–166

    CAS  Google Scholar 

  124. Hütter G, Nowak D, Mossner M et al (2009) Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med 360(7):692–698

    PubMed  Google Scholar 

Download references

Acknowledgments

The research work of Dr. Pankaj Seth at NBRC is supported by research grants from Department of Biotechnology (DBT), New Delhi, India, National Institutes of Health (NIH RO1), Bethesda, USA and institutional core funding. Research Fellowship to MP and PG by Council of Scientific and Industrial Research, New Delhi, is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Seth.

Additional information

Manju Pant and Pretty Garg contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pant, M., Garg, P. & Seth, P. Central Nervous System Infection by HIV-1: Special Emphasis to NeuroAIDS in India. Proc. Natl. Acad. Sci. Sect B. Biol. Sci. 82, 81–94 (2012). https://doi.org/10.1007/s40011-011-0007-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-011-0007-8

Keywords

Navigation