Skip to main content
Log in

Die adoptive Immuntherapie (ADI) des metastasierten Mammakarzinoms als translationaler Therapieansatz

Adoptive Immunotherapy (ADI) of Metastasized Breast Cancer

  • GRAND ROUNDS
  • Published:
Onkopipeline

Zusammenfassung

Das Mammakarzinom wird als systemische Erkrankung mit primär lokoregionärer Komponente verstanden. Ziel der Therapie ist neben der operativen Resektion sowie der Strahlentherapie eine Elimination von disseminierten, mikrometastatischen Tumorzellen durch zytostatische bzw. hormonelle Therapie. Trotzdem erleidet ein Großteil der Patientinnen systemische Rezidive in Form von Fernmetastasen. Ein Grund hierfür kann der Verlust des immunologischen Gleichgewichts („tumor dormancy“) im Rahmen der intensiven Auseinandersetzung von T-Zellen und Tumorzellen im Knochenmark sein. Daher rücken unter Berücksichtigung der immunologischen Besonderheiten des Mammakarzinoms weitere supportive Therapien immer stärker in den klinischen Fokus.

Tumorspezifische Gedächtnis-T-Zellen (TMC) sind bei einem Großteil der Mammakarzinompatientinnen im Knochenmark nachweisbar. Eine vergleichbare spezifische T-Zell-Reaktivität im peripheren Blut kann nicht belegt werden. TMC des Knochenmarks lassen sich in vitro zu Interferon-γ-produzierenden, zytotoxischen Effektorzellen reaktivieren. In NOD/SCID-Mäusen können tumorreaktive TMC des Knochenmarks nach spezifischer Restimulation mittels autologer dendritischer Zellen xenotransplantierte, autologe Tumoren abstoßen. Die Tumorregression beruht vor allem auf einer selektiven Infiltration von CD45RO+ TMC und CD11+ dendritischen Zellen. Die adoptive Immuntherapie (ADI) bei metastasierten Mammakarzinompatientinnen mit aktivierten, autologen TMC des Knochenmarks erwies sich im Rahmen einer Phase-I-Studie als nebenwirkungsarme Therapieform ohne relevante Toxizität. Posttherapeutisch konnten bei der Hälfte der Patientinnen tumorantigenreaktive T-Zellen im peripheren Blut nachgewiesen werden (ADI-Response). Bei einem Teil der Patientinnen wurde ein objektivierbarer Abfall der Tumormarker beobachtet. Trotzdem zeigten alle Patientinnen in der klinischen Verlaufskontrolle eine Progredienz der Erkrankung. Hier gilt es, die tatsächliche Effektivität der ADI in einer langfristigen Phase-II-Studie zu untersuchen. Möglicherweise ergibt sich ein vorteilhafteres Verhältnis von Tumorzellen zu transfundierbaren, zytotoxischen Effektor-T-Zellen zum Zeitpunkt der geringsten Tumorlast direkt post operationem. Perspektivisch bleibt abzuwarten, ob die ADI – beispielsweise in der adjuvanten Situa - tion – neben bereits etablierten Therapieformen der betroffenen Patientin nachweisbar klinischen Nutzen bringen kann.

Abstract

Breast cancer is considered to be a systemic disease with a primarily local component. Besides surgical resection and irradiation, respectively, the therapeutic regimen is aiming to eliminate disseminated, micrometastatic tumor cells by cytostatic or hormonal therapy. Nevertheless, a majority of patients suffers from systemic recurrence in the form of distant metastases. This might be based on the loss of immunologic equivalence (tumor dormancy) during intense interactions of T cells and tumor cells in the human bone marrow. For this reason, further supportive therapies become more relevant in the clinical context with respect to the immunologic features of breast cancer.

Tumor-specific memory T cells (TMC) are detectable in the bone marrow of a majority of breast cancer patients. A similar, specific T-cell reactivity cannot be seen in the peripheral blood. In vitro, TMC of the bone marrow can be reactivated to interferon-γ-producing, cytotoxic effector cells. After specific restimulation with autologous dendritic cells, tumor-reactive TMC of the bone marrow rejected autologous, xenotransplanted tumors in NOD/ SCID mice. Tumor regression was due to selective infiltration of CD45RO+ TMC and CD11+ dendritic cells. In a phase I study, adoptive immunotherapy (ADI) of the metastasized breast cancer patient with activated, autologous TMC of the bone marrow turned out to be a safe form of treatment without a relevant toxicity. Posttherapeutically, half of the patients showed tumor antigen-reactive T cells in peripheral blood (ADI response). In some cases, an objective decrease of tumor markers was noticed. Nevertheless, all patients showed clinical progress in a follow-up analysis. For this reason, the actual efficacy of ADI has to be analyzed in a long-term phase II study. There might be, however, a more advantageous relation of tumor cells to transfusable, cytotoxic effector T cells at the time of lowest tumor mass just after surgery. Perspectively, there is hope in ADI – for instance, in an adjuvant setting – as a form of treatment with actual, clinical benefit for the patient next to other established therapeutic regimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Literatur

  1. Bai L, Feuerer M, Beckhove P, et al. Generation of dendritic cells from human bone marrow mononuclear cells: advantages for clinical application in comparison to peripheral blood monocyte derived cells. Int J Oncol 2002;20:247–253.

    CAS  PubMed  Google Scholar 

  2. Beckhove P, Feuerer M, Dolenc M, et al. Specifically activated memory T cell subsets from cancer patients recognize and reject xenotransplanted autologous tumors. J Clin Invest 2004;114:67–76.

    CAS  PubMed  Google Scholar 

  3. Braun S, Naume B. Circulating and disseminated tumor cells. J Clin Oncol 2005;23:1623–1626.

    Article  PubMed  Google Scholar 

  4. Braun S, Vogl FD, Naume B, et al. A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med 2005;353:793–802.

    Article  CAS  PubMed  Google Scholar 

  5. Brossart P, Wirths S, Stuhler G, et al. Induction of cytotoxic T-lymphocyte responses in vivo after vaccinations with peptide-pulsed dendritic cells. Blood 2000;96:3102–3108.

    CAS  PubMed  Google Scholar 

  6. Choi C, Witzens M, Bucur M, et al. Enrichment of functional CD8 memory T cells specific for MUC1 in bone marrow of patients with multiple myeloma. Blood 2005;105:2132–2134.

    Article  CAS  PubMed  Google Scholar 

  7. Cote RJ, Rosen PP, Lesser ML, et al. Prediction of early relapse in patients with operable breast cancer by detection of occult bone marrow micrometastases. J Clin Oncol 1991;9:1749–1756.

    CAS  PubMed  Google Scholar 

  8. Demicheli R. Tumour dormancy: findings and hypotheses from clinical research on breast cancer. Semin Cancer Biol 2001;11:297–306.

    Article  CAS  PubMed  Google Scholar 

  9. Diel IJ, Kaufmann M, Costa SD, et al. Micrometastatic breast cancer cells in bone marrow at primary surgery: prognostic value in comparison with nodal status. J Natl Cancer Inst 1996;88:1652–1658.

    Article  CAS  PubMed  Google Scholar 

  10. Dudley ME, Wunderlich JR, Yang JC, et al. A phase I study of nonmyeloablative chemotherapy and adoptive transfer of autologous tumor antigen-specific T lymphocytes in patients with metastatic melanoma. J Immunother 2002;25:243–251.

    Article  CAS  PubMed  Google Scholar 

  11. Feuerer M, Beckhove P, Bai L, et al. Therapy of human tumors in NOD/SCID mice with patient-derived reactivated memory T cells from bone marrow. Nat Med 2001;7:452–458.

    Article  CAS  PubMed  Google Scholar 

  12. Feuerer M, Beckhove P, Garbi N, et al. Bone marrow as a priming site for T-cell responses to blood-borne antigen. Nat Med 2003;9:1151–1157.

    Article  CAS  PubMed  Google Scholar 

  13. Feuerer M, Beckhove P, Mahnke Y, et al. Bone marrow microenvironment facilitating dendritic cell: CD4 T cell interactions and maintenance of CD4 memory. Int J Oncol 2004;25:867–876.

    PubMed  Google Scholar 

  14. Feuerer M, Rocha M, Bai L, et al. Enrichment of memory T cells and other profound immunological changes in the bone marrow from untreated breast cancer patients. Int J Cancer 2001;92:96–105.

    Article  CAS  PubMed  Google Scholar 

  15. Goldrath AW, Bevan MJ. Selecting and maintaining a diverse T-cell repertoire. Nature 1999;402:255–262.

    Article  CAS  PubMed  Google Scholar 

  16. Hamann D, Baars PA, Rep MH, et al. Phenotypic and functional separation of memory and effector human CD8+ T cells. J Exp Med 1997;186:1407–1418.

    Article  CAS  PubMed  Google Scholar 

  17. Jiang XP, Yang DC, Elliott RL, et al. Vaccination with a mixed vaccine of autogenous and allogeneic breast cancer cells and tumor associated antigens CA15-3, CEA and CA125: results in immune and clinical responses in breast cancer patients. Cancer Biother Radiopharm 2000;15:495–505.

    Article  CAS  PubMed  Google Scholar 

  18. Kämmerer U, Thanner F, Kapp M, et al. Expression of tumor markers on breast and ovarian cancer cell lines. Anticancer Res 2003;23:1051–1055.

    PubMed  Google Scholar 

  19. Khazaie K, Prifti S, Beckhove P, et al. Persistence of dormant tumor cells in the bone marrow of tumor cell-vaccinated mice correlates with long-term immunological protection. Proc Natl Acad Sci U S A 1994;91:7430–7434.

    Article  CAS  PubMed  Google Scholar 

  20. Lanzavecchia A, Sallusto F. From synapses to immunological memory: the role of sustained T cell stimulation. Curr Opin Immunol 2000;12:92–98.

    Article  CAS  PubMed  Google Scholar 

  21. Mansi JL, Gogas H, Bliss JM, et al. Outcome of primary-breast-cancer patients with micrometastases: a long-term follow-up study. Lancet 1999;354:197–202.

    Article  CAS  PubMed  Google Scholar 

  22. Mazo IB, Honczarenko M, Leung H, et al. Bone marrow is a major reservoir and site of recruitment for central memory CD8+ T cells. Immunity 2005;22:259–270.

    Article  CAS  PubMed  Google Scholar 

  23. Müller M, Gounari F, Prifti S, et al. EblacZ tumor dormancy in bone marrow and lymph nodes: active control of proliferating tumor cells by CD8+ immune T cells. Cancer Res 1 1998;58:5439–5446.

    Google Scholar 

  24. Muller-Berghaus J, Ehlert K, Ugurel S, et al. Melanoma-reactive T cells in the bone marrow of melanoma patients: association with disease stage and disease duration. Cancer Res 2006;66:5997–6001.

    Article  PubMed  Google Scholar 

  25. Osmond DG. Production and selection of B lymphocytes in bone marrow: lymphostromal interactions and apoptosis in normal, mutant and transgenic mice. Adv Exp Med Biol 1994;355:15–20.

    CAS  PubMed  Google Scholar 

  26. Sallusto F, Lenig D, Förrster R, et al. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 1999;401:708–712.

    Article  CAS  PubMed  Google Scholar 

  27. Schirrmacher V, Feuerer M, Beckhove P, et al. T cell memory, anergy and immunotherapy in breast cancer. J Mammary Gland Biol Neoplasia 2002;7:201–208.

    Article  PubMed  Google Scholar 

  28. Schirrmacher V, Feuerer M, Fournier P, et al. T-cell priming in bone marrow: the potential for long-lasting protective anti-tumor immunity. Trends Mol Med 2003;9:526–534.

    Article  CAS  PubMed  Google Scholar 

  29. Schmitz-Winnenthal FH, Volk C, Z’graggen K, et al. High frequencies of functional tumor-reactive T cells in bone marrow and blood of pancreatic cancer patients. Cancer Res 2005;65:10079–10087.

    Article  CAS  PubMed  Google Scholar 

  30. Schuetz F, Ehlert K, Ge Y, et al. Treatment of advanced metastasized breast cancer with bone marrow-derived tumour-reactive memory T cells: a pilot clinical study. Cancer Immunol Immunother 2008;58:887–900.

    Article  PubMed  Google Scholar 

  31. Sommerfeldt N, Schütz F, Sohn C, et al. The shaping of a polyvalent and highly individual T-cell repertoire in the bone marrow of breast cancer patients. Cancer Res 2 2006;66:8258–8265.

    Article  CAS  Google Scholar 

  32. Veiga-Fernandes H, Walter U, Bourgeois C, et al. Response of naive and memory CD8+ T cells to antigen stimulation in vivo. Nat Immunol 2000;1:47–53.

    Article  CAS  PubMed  Google Scholar 

  33. Yee C, Thompson JA, Roche P, et al. Melanocyte destruction after antigen-specific immunotherapy of melanoma: direct evidence of t cell-mediated vitiligo. J Exp Med 2000;192:1637–1644.

    Article  CAS  PubMed  Google Scholar 

  34. Zinkernagel RM, Bachmann MF, Kündig TM, et al. On immunological memory. Annu Rev Immunol 1 1996;14:333–367.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph W. Domschke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Domschke, C.W., Beckhove, P., Ge, Y. et al. Die adoptive Immuntherapie (ADI) des metastasierten Mammakarzinoms als translationaler Therapieansatz. Onkopipeline 2, 164–170 (2009). https://doi.org/10.1007/s15035-009-0156-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s15035-009-0156-x

Schlüsselwörter:

Key Words:

Navigation