Skip to main content
Log in

Salinity mediated biochemical changes towards differential adaptability of three mangroves from Indian Sundarbans

  • Original article
  • Published:
Journal of Plant Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Cellular ion homeostasis through osmotic adjustment and efficient free radical scavenging ability are considered as fundamental salt tolerance determinants of plants. Increased salinity (~30 ppt) in Indian Sundarbans has incurred detrimental impact on vegetation pattern, and leading to the precarious existence of some taxa. A comparative account on some physiological and biochemical determinants towards salt stress were assayed in order to focus on the extent of adaptability among the three true mangroves. An in vitro experiment was carried out with mangrove seedlings of Avicennia marina, Bruguiera gymnorrhiza and Heritiera fomes in differential NaCl treatments. Among the five sets of treatment (0, 100, 200, 300 and 400 mM), leaf osmotic potential (ψ) shows consistent hike in A. marina and B. gymnorrhiza along the salinity gradient, at least up to 300 mM (77 and 58 % respectively over control) and comparatively poor in 400 mM. On the other hand, H. fomes reaches its maximum OP value in 200 mM NaCl treatment (64 % increment from control). Thin layer Chromatography was employed for assessing seven free amino acids and spectrophotometric quantification of them from leaf tissues grown in different salinity gradients were performed. The two antioxidative enzymes (Peroxidase and Superoxide dismutase) were estimated qualitatively and quantitatively in three taxa at different salinity level. As compared to other two taxa, H. fomes depicted fewer numbers of isoforms of two enzymes in PAGE analysis, and less enzyme activity across the salinity gradients. Considering the studied parameters, H. fomes might be endorsed towards the feeble adaptability in the present day’s elevated salinity of Indian Sundarbans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

PRX:

Peroxidase

SOD:

Superoxide dismutase

Asp:

Aspartic acid

Ala:

Alanine

Leu:

Leucine

P-Ala:

Phenyl-Alanine

Pro:

Proline

Trp:

Tryptophan

Tyro:

Tyrosine

References

  • Abogadalla GM (2010) Antioxidant defense under salt stress. Plant Signal Behav 5(4):369–374

    Article  Google Scholar 

  • Alongi DM (2002) Present state and future of the world’s mangrove forests. Environ Conserv 29:331–349

    Article  Google Scholar 

  • Alongi DM (2009) Introduction in the energetic of mangrove forests. Springer Science and Business Media BV, New York

    Google Scholar 

  • Arshi A, Abdin MZ, Iqbal M (2005) Ameliorative effect of CaCl2 on growth, ionic relations and proline content of Senna under salinity stress. J Plant Nutr 28:101–125

    Article  CAS  Google Scholar 

  • Asada K (1994) Production and action of active oxygen species in photosynthetic tissue. In: Foyer CH, Mullineaux P (eds) Causes of photo-oxidative stress and amelioration of defense systems in plants. CRC Press, Boca Raton, pp 77–104

    Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ashraf M (1994) Breeding for salinity tolerance in plants. Crit Rev Plant Sci 13:17–42

    Google Scholar 

  • Ashraf M, Harris PJC (2004) Potential biochemical indicators of salinity tolerance plants. Plant Sci 166:3–16

    Article  CAS  Google Scholar 

  • Aziz I, Khan MA (2001) Effect of sea water on the growth, ion content and water potential of Rhizophora mucronata, Lam. J Plant Res 114:369–373

    Article  Google Scholar 

  • Banerjee LK (1999) Mangroves of Orissa coast and their ecology. Bishen Singh Mohendra Pal Singh, Dehra Dun, p 41

    Google Scholar 

  • Bartels D, Sunkar R (2005) Draught and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Bhosale LJ (1985) Free amino acids in mangroves-significance. Proc Nat Symp Biol Util Cons Mangroves, Kolhapur, p 558

  • Das S, Mukherjee KK (1997) Morphological and biochemical investigations on Ipomea seedlings and their species interrelationships. Ann Bot 79:565–571

    Article  Google Scholar 

  • Dasgupta N, Nandy P, Das S (2011) Photosynthesis and antioxidative enzyme activities in five Indian mangroves with respect to their adaptability. Acta Physiol Planta 33:803–810

    Article  CAS  Google Scholar 

  • Duke NC, Meynecke JO, Dittmann S, Ellison AM, Anger K, Berger U, Cannicci S, Diele K, Ewel KC, Field CD, Koedam N, Lee SY, Marchand C, Nordhaus I, Dahdouh-Guebas F (2007) A world without mangroves? Science 317:41–42

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  CAS  PubMed  Google Scholar 

  • Flowers TJ, Troke PF, Yeo AR (1977) Mechanism of salt tolerance in halophytes. Annu Rev Plant Physiol Plant Mol Biol 28:89–121

    CAS  Google Scholar 

  • Foyer CH, Lelandais M, Kunert KJ (1994) Photo oxidative stress in plants. Physiol Plant 92:696–717

    Article  CAS  Google Scholar 

  • Gaspar T, Franck T, Bisbis B, Kevers C, Jouve L, Hausman JF, Dommes J (2002) Concepts in plant stress physiology. Application to plant tissue cultures. Plant Growth Regul 37:263–285

    Article  CAS  Google Scholar 

  • Gilman E, Ellison J, Duke NC, Field C (2008) Threats to mangroves from climate change and adaptation options: a review. Aquat Bot 89(2):237–250

    Article  Google Scholar 

  • Giri C, Zhu Z, Tieszen LL, Singh A, Gillette S, Kelmelis JA (2008) Mangrove forest distribution and dynamics (1975-2005) of the Tsunami affected region of Asia. J Biogeogr 35:519–528

    Article  Google Scholar 

  • Giri C, Ochieng E, Tieszen LL, Zhu Z, Singh A, Loveland T, Masek J, Duke N (2011) Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecol Biogeogr 20:154–159

    Article  Google Scholar 

  • Greenway H, Munns R (1980) Mechanism of salt tolerance in non-halophytes. Annu Rev Plant Physiol 31:149–190

    Article  CAS  Google Scholar 

  • Greenway H, Munns R, Wolfe J (1983) Interactions between growth, Cl and Na+ uptake, and water relations of plants in saline environments. 1. Slightly vacuolated cells. Plant Cell Environ 6:567–574

    Article  CAS  Google Scholar 

  • Haq S, Karim Z, Asaduzzaman M, Mahtab F (1999) Vulnerability and adaptation to climate change for Bangladesh. Kluwer Academic Publishers, The Netherlands

    Book  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  PubMed  Google Scholar 

  • Heldt HW (1999) Plant biochemistry and molecular biology. Oxford University Press, Oxford, pp 247–276

    Google Scholar 

  • Hibino T, Meng YL, Kawamitsu Y, Uehara N, Matsuda N, Tanaka Y, Ishikawa H, Baba S, Takabe T, Wada K, Ishii T, Takabe T (2001) Molecular cloning and functional characterization of two kinds of betaine aldehyde dehydrogenase in betaine accumulating mangrove Avicennia marina (Forsk.) Vierh. Plant Mol Biol 45:353–363

    Article  CAS  PubMed  Google Scholar 

  • Hogarth PJ (2007) The biology of mangroves and sea grasses. Oxford University Press, Oxford, p 273

    Book  Google Scholar 

  • Horemans N, Foyer CH, Potters G, Asard H (2000) Ascorbate function and associated transport system in plants. Plant Physiol Biochem 38:531–540

    Article  CAS  Google Scholar 

  • Janardhan KV, Parashivamurthy AS, Giriraj K, Panchaksharaiah S (1975) A rapid method for determination of osmotic potential of plant cell sap. Curr Sci 44:390–391

    Google Scholar 

  • Jayaramana J (1999) Laboratory manual in biochemistry. New Age International Publishers, New Delhi, pp 61–67

    Google Scholar 

  • Joseph B, Jini D (2011) Development of salt-stress tolerant plants by gene manipulation of antioxidant enzymes. Asian J Agric Res 5:17–27

    Article  CAS  Google Scholar 

  • Joshi G, Dolan T, Gee R, Saltman P (1962) Sodium chloride effect on dark fixation of CO2 by marine and terrestrial plants. Plant Physiol 37:446–449

    Google Scholar 

  • Kamel M (2008) Osmotic adjustment in three succulent species of Zygophyllaceae. Afr J Ecol 46:96–104

    Article  Google Scholar 

  • Kavitha K, Venkataraman G, Parida A (2008) An oxidative and salinity stress induced peroxisomal ascorbate peroxidase from Avicennia marina: molecular and functional characterization. Plant Physiol Biochem 46:794–804

    Article  CAS  PubMed  Google Scholar 

  • Keith H, Emmanuelle V, Hélène B, Charistian A (1983) Superoxide dismutase assay using alkaline dimethyl sulfoxide as superoxide anion-generating system. Anal Biochem 135:280–287

    Article  Google Scholar 

  • Khan AM, Aziz I (2001) Salinity tolerance in some mangrove species from Pakistan. Wetl Ecol Manag 9:219–223

    Google Scholar 

  • Kura-Hotta M, Mimura M, Tsujimura T, Washitani-Nemoto S, Mimura T (2001) High salt treatment induced Na+ extrusion and low salt-treatment induced Na+ accumulation in suspension cultured cells of the mangrove plant, Bruguiera sexangula. Plant Cell Environ 24:1105–1112

    Article  CAS  Google Scholar 

  • Lakshmi M, Rajalakshmi S, Parani M, Anuratha CS, Parida AK (1997) Molecular phylogeny of mangroves I. Use of molecular markers in assessing the intra-specific genetic variability in the mangrove species Acanthus ilicifolius Linn. (Acanthaceae). Theor Appl Genet 94:1121–1127

    Article  CAS  Google Scholar 

  • Macfarlane GR, Burchett MD (2001) Photosynthetic pigments and peroxidase activity as indicators of heavy metal stress in the grey mangrove, Avicennia marina (Forsk.) Vierh. Mar Pollut Bull 42(3):233–240

    Article  CAS  PubMed  Google Scholar 

  • Masood A, Shah NA, Zeeshan M, Abraham G (2006) Differential response of antioxidant enzymes to salinity stress in two varieties of Azolla (Azolla pinnata and Azolla tilieuloides). Env Exp Bot 58:216–222

    Article  CAS  Google Scholar 

  • Mimura T, Kura-Hotta M, Tsujimura T, Ohnishi M, Miura M, Okazaki Y, Mimura M, Maeshima M, Washitani-Nemoto S (2003) Rapid increase of vacuolar volume in response to salt stress. Planta 216:397–402

    CAS  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress: antioxidants and stress tolerance. Trend Plant Sci 7:405–410

    Article  CAS  Google Scholar 

  • Mittova V, Tal M, Volokita M, Guy M (2002) Salt stress induces up-regulation of an efficient chloroplasts antioxidant system in the salt-tolerant wild tomato species Lycopersicon pennellii but not in the cultivated species. Plant Physiol 115:393–400

    Article  CAS  Google Scholar 

  • Mohamed AA, Mohamed AM, Mahmoud MS (2010) Effect of salt stress on some defense mechanisms of transgenic and wild potato clones (Solanum tuberosum L.) grown in vitro. Nat Sci 8(12):181–193

    Google Scholar 

  • Morgan JM (1984) Osmoregulation and water stress in higher plants. Annu Rev Plant Physiol Plant Mol Biol 35:299–319

    Article  Google Scholar 

  • Muns R, Tester M (2008) Mechanisms of salt tolerance. Ann Rev Plant Biol 59:651–681

    Article  Google Scholar 

  • Naidoo G (1989) Seasonal plant water relations in a South African mangrove swamp. Aquat Bot 3:87–100

    Article  Google Scholar 

  • Nandy P, Ghose M (2003) Estimation of osmotic potential and free amino acids in some mangroves of the Sundarbans, India. Acta Bot Croat 62(1):37–45

    Google Scholar 

  • Nandy P, Das S, Ghose M (2005) Relation of leaf micromorphology with photosynthesis and water efflux in some Indian mangroves. Acta Bot Croat 64(2):331–340

    Google Scholar 

  • Nandy P, Das S, Ghose M, Spooner Hart R (2007) Effects of salinity on photosynthesis, leaf anatomy, ion accumulation and photosynthetic nitrogen use efficiency in five Indian mangroves. Wetl Ecol Manag 15:347–357

    Article  CAS  Google Scholar 

  • Nandy P, Dasgupta N, Das S (2009) Differential expression of physiological and biochemical defense mechanisms of some Indian mangroves towards salt tolerance. Physiol Mol Biol Plants 151(2):151–160

    Article  Google Scholar 

  • Olmos E, Hellin E (1997) Cytochemical localization of Atpase plasma membrane and acid phosphatase by cerium based in a salt-adapted cell line of Pisum sativum. J Exp Bot 48:1529–1535

    CAS  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Safety 60:324–349

    Article  CAS  PubMed  Google Scholar 

  • Parida AK, Das AB, Das P (2002) NaCl stress causes changes in photosynthetic pigments, proteins, and other metabolic components in the leaves of a true mangrove, Bruguiera parviflora, in hydroponic cultures. J Plant Biol 45:28–36

    Article  CAS  Google Scholar 

  • Parida AK, Das AB, Mohanty P (2004a) Defense potentials to NaCl in a mangrove, Bruguiera parviflora: differential changes of isoforms of some antioxidative enzymes. J Plant Physiol 161(5):531–542

    Article  CAS  PubMed  Google Scholar 

  • Parida AK, Das AB, Mohanty P (2004b) Investigations on the antioxidative defense responses to NaCl stress in a mangrove, Bruguiera parviflora: Differential regulations of isoforms of some antioxidative enzymes. Plant Growth Regul 42(3):213–226

    Article  CAS  Google Scholar 

  • Pastori GM, Trippi VS (1993) Cross resistance between water and oxidant stresses in wheat leaves. J Agric Sci 120:289–294

    Article  CAS  Google Scholar 

  • Popp M, Larher F, Weigel P (1985) Osmotic adaption in Australian mangroves. Vegetatio 61:247–253

    Article  Google Scholar 

  • Popp M, Polania J, Weiper M (1993) Physiological adaptations to different salinity levels in mangrove. In: Lieth H, Al Masoom A (eds) Towards the rational use of high salinity tolerant plants. The Netherlands. 1:217-224

  • Procházková D, Wilhelmová N (2007) The capacity of antioxidant protection during modulated ageing of bean (Phaseolus vulgaris) cotyledons. 1. The antioxidant enzyme activities. Cell Biochem Func 25:87–95

    Article  Google Scholar 

  • Procházková D, Sairam RK, Srivastava GC, Singh DV (2001) Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Sci 161:765–771

    Article  Google Scholar 

  • Rabie GH, Almadini AM (2005) Role of bioinoculants in development of salt tolerance of Vicia faba plants under salinity stress. Afr J Biotech 4:210–222

    CAS  Google Scholar 

  • Rada FG, Goldstein A, Orozco A, Montilla M, Zabala O, Azocar A (1989) Osmotic and turgor relations of three mangrove ecosystem species. Aust J Plant Physiol 16:477–486

    Article  Google Scholar 

  • Scholander PF (1968) How mangroves desalinate water. Physiol Plant 21:251–261

    Article  CAS  Google Scholar 

  • Scholander PF, Hammel HT, Hemmingsen EA, Bradstreet ED (1964) Hydrostatic pressure and osmotic potential in leaves of mangroves and some other plants. Proc Natl Acad of Sci USA 52:119–125

    Article  CAS  Google Scholar 

  • Shannon LM, Key E, Lew JY (1966) Peroxidase isozyme from Horseraddish root. I. Isolation and physical properties. J Biol Chem 249(9):2166–2172

    Google Scholar 

  • Smith TJ III, Chan HT, McIvor CC, Robblee MB (1989) Comparisons of seed predation in tropical, tidal forests on three continents. Ecology 70:146–151

    Article  Google Scholar 

  • Spadling MD, Blasco F, Field CD (1997) World mangrove atlas. The International Society for Mangrove Ecosystem, Okinawa

    Google Scholar 

  • Spiers AG (1999) Review of International continental wetland resources. Global review of wetland resources and priorities for wetland inventory. Finlayson CM, Spiers AG (eds) Supervising Scientist Report 144. Canberra, Australia. pp 63-104

  • Sternberg L, Ish-Shalom-Gorden N, Ross M, O’Brein J (1991) Water relations of coastal plant communities near the ocean/freshwater boundary. Oecologia 88:305–310

    Article  Google Scholar 

  • Takemura T, Hanagata N, Sugihara K, Baba S, Karube I, Dubinsky Z (2000) Physiological and biochemical responses to salt stress in the mangrove, Bruguiera gymnorrhiza. Aquat Bot 68:15–28

    Article  CAS  Google Scholar 

  • Tanaka Y, Hibino T, Hayashi Y, Tanaka A, Kishitani S, Yokota S, Takabe T (1999) Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn-SOD in chloroplasts. Plant Sci 148:131–138

    Article  CAS  Google Scholar 

  • Tomlinson PB (1986) The botany of mangroves. Cambridge University Press, Cambridge, p 413

    Google Scholar 

  • Upadhaya VP, Ranjan R, Singh JS (2002) The human mangrove conflicts – the way out. Curr Sci 83(11):1328–1336

    Google Scholar 

  • Yan Z, Wang W, Tang D (2007) Effect of different time of salt stress on growth and some physiological processes of Avicennia marina seedlings. Mar Biol 152:581–587

    Article  CAS  Google Scholar 

  • Ye Y, Tam Nora FY, Wong YS, Lu CY (2003) Growth and physiological responses of two mangrove species (Bruguiera gymnorrhiza and Kandelia candel) to water logging. Environ Exp Bot 49(3):209–221

    Article  Google Scholar 

Download references

Acknowledgement

The authors are sincerely obliged to the Director, Sundarbans Biosphere Reserve and Chief Principal Conservator of Forest and Wildlife, Government of West Bengal, for providing necessary permission to conduct field work time to time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sauren Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dasgupta, N., Nandy, P., Sengupta, C. et al. Salinity mediated biochemical changes towards differential adaptability of three mangroves from Indian Sundarbans. J. Plant Biochem. Biotechnol. 23, 31–41 (2014). https://doi.org/10.1007/s13562-012-0182-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13562-012-0182-6

Keywords

Navigation