Skip to main content
Log in

Dysfonction myocardique post-arrêt cardiaque

Postcardiac arrest myocardial dysfonction

  • Mise au Point / Update
  • Published:
Réanimation

Résumé

La dysfonction myocardique post-arrêt cardiaque est une complication fréquemment observée, qui aggrave la situation hémodynamique et est grevée d’une morbimortalité propre. Son identification précoce, associée à un traitement approprié, constitue un élément important de la prise en charge en réanimation des survivants d’arrêt cardiaque. Cette dysfonction myocardique, dont le diagnostic repose essentiellement sur l’échocardiographie, survient généralement précocement après le retour à une activité circulatoire spontanée, et est complètement réversible en 48 à 72 heures. Elle se manifeste par une dysfonction systolique et diastolique. Elle peut être observée même en l’absence de cause coronaire à l’arrêt cardiaque. Une éventuelle cause ischémique doit toutefois systématiquement être recherchée, et le cas échéant traitée, car elle constitue un facteur aggravant cette dysfonction myocardique. À ce jour, le traitement inotrope de référence dans cette situation demeure la dobutamine, aucun autre outil pharmacologique n’ayant démontré un bénéfice plus important. Dans les situations les plus sévères, il est parfois nécessaire de mettre en place une assistance mécanique circulatoire si le pronostic neurologique est considéré favorable.

Abstract

Post-resuscitation myocardial dysfunction (PRMD) is a frequent complication, which worsens hemodynamic status and may be lethal by itself. Early identification and treatment of this cardiac complication is one of the key-targets of support during hospitalization of these patients. Easy to identify using echocardiography, PRMD usually begins early after the resuscitation, and is completely reversible within 48 to 72 hours. Its presentation associates myocardial systolic and diastolic dysfunctions, even in the absence of coronary cause. However, detection and treatment of myocardial ischemia should be systematically performed when a coronary cause of cardiac arrest is suspected. To date, the most recommended treatment for systolic dysfunction remains dobutamine since no other pharmacological agents demonstrated its superiority in this setting. In the most severe cases, a mechanical circulatory assistance should be considered providing that neurological prognosis is not compromised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Références

  1. Sasson C, Rogers MA, Dahl J, Kellermann AL (2010) Predictors of survival from out-of-hospital cardiac arrest: a systematic review and meta-analysis. Circ Cardiovasc Qual Outcomes 3:63–81

    Article  PubMed  Google Scholar 

  2. Lemiale V, Dumas F, Mongardon N, et al (2013) Intensive care unit mortality after cardiac arrest: the relative contribution of shock and brain injury in a large cohort. Intensive Care Med 39:1972–1980

    Article  PubMed  Google Scholar 

  3. Grace PA (1994) Ischaemia-reperfusion injury. Br J Surg 81: 637–647

    Article  PubMed  CAS  Google Scholar 

  4. Negovsky VA (1972) The second step in resuscitation—the treatment of the “post-resuscitation disease”. Resuscitation 1:1–7

    Article  PubMed  CAS  Google Scholar 

  5. Gazmuri RJ, Weil MH, Bisera J, et al (1996) Myocardial dysfunction after successful resuscitation from cardiac arrest. Crit Care Med 24:992–1000

    Article  PubMed  CAS  Google Scholar 

  6. Kern KB, Hilwig RW, Rhee KH, et al (1996) Myocardial dysfunction after resuscitation from cardiac arrest: an example of global myocardial stunning. J Am Coll Cardiol 28:232–240

    Article  PubMed  CAS  Google Scholar 

  7. Cerchiari EL, Safar P, Klein E, et al (1993) Cardiovascular function and neurologic outcome after cardiac arrest in dogs. The cardiovascular post-resuscitation syndrome. Resuscitation 25:9–33

    Article  PubMed  CAS  Google Scholar 

  8. Xu T, Tang W, Ristagno G, et al (2008) Postresuscitation myocardial diastolic dysfunction following prolonged ventricular fibrillation and cardiopulmonary resuscitation. Crit Care Med 36:188–192

    Article  PubMed  Google Scholar 

  9. Deantonio HJ, Kaul S, Lerman BB (1990) Reversible myocardial depression in survivors of cardiac arrest. Pacing Clin Electrophysiol PACE 13:982–985

    Article  CAS  Google Scholar 

  10. Ruiz-Bailén M, Aguayo de Hoyos E, Ruiz-Navarro S, et al (2005) Reversible myocardial dysfunction after cardiopulmonary resuscitation. Resuscitation 66:175–181

    Article  PubMed  Google Scholar 

  11. Chang WT, Ma MH, Chien KL, et al (2006) Postresuscitation myocardial dysfunction: correlated factors and prognostic implications. Intensive Care Med 33:88–95

    Article  PubMed  Google Scholar 

  12. Laurent I, Monchi M, Chiche JD, et al (2002) Reversible myocardial dysfunction in survivors of out-of-hospital cardiac arrest. J Am Coll Cardiol 40:2110–2116

    Article  PubMed  Google Scholar 

  13. Adrie C, Adib-Conquy M, Laurent I, et al (2002) Successful cardiopulmonary resuscitation after cardiac arrest as a “sepsis-like” syndrome. Circulation 106:562–568

    Article  PubMed  Google Scholar 

  14. Chalkias A, Xanthos T (2011) Pathophysiology and pathogenesis of post-resuscitation myocardial stunning. Heart Fail Rev 17:117–128

    Article  Google Scholar 

  15. Fries M, Weil MH, Chang YT, et al (2006) Microcirculation during cardiac arrest and resuscitation. Crit Care Med 34:S454–S457

    Article  PubMed  Google Scholar 

  16. Kamohara T, Weil MH, Tang W, et al (2001) A comparison of myocardial function after primary cardiac and primary asphyxial cardiac arrest. Am J Respir Crit Care Med 164:1221–1224

    Article  PubMed  CAS  Google Scholar 

  17. Gazmuri RJ (2000) Effects of repetitive electrical shocks on postresuscitation myocardial function. Crit Care Med 28:N228–N232

    Article  PubMed  CAS  Google Scholar 

  18. Tang W, Weil MH, Sun S, et al (2001) A comparison of biphasic and monophasic waveform defibrillation after prolonged ventricular fibrillation. Chest 120:948–954

    Article  PubMed  CAS  Google Scholar 

  19. Tang W, Weil MH, Sun S, et al (1999) The effects of biphasic and conventional monophasic defibrillation on postresuscitation myocardial function. J Am Coll Cardiol 34:815–822

    Article  PubMed  CAS  Google Scholar 

  20. Ristagno G, Wang T, Tang W, et al (2008) High-energy defibrillation impairs myocyte contractility and intracellular calcium dynamics. Crit Care Med 36:S422–S427

    Article  PubMed  Google Scholar 

  21. Xie J, Weil MH, Sun S, et al (1997) High-energy defibrillation increases the severity of postresuscitation myocardial dysfunction. Circulation 96:683–688

    Article  PubMed  CAS  Google Scholar 

  22. Tang W, Weil MH, Sun S, et al (1995) Epinephrine increases the severity of postresuscitation myocardial dysfunction. Circulation 92:3089–3093

    Article  PubMed  CAS  Google Scholar 

  23. Rivers E, Nguyen B, Havstad S, et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377

    Article  PubMed  CAS  Google Scholar 

  24. Gaieski DF, Band RA, Abella BS, et al (2009) Early goaldirected hemodynamic optimization combined with therapeutic hypothermia in comatose survivors of out-of-hospital cardiac arrest. Resuscitation 80:418–424

    Article  PubMed  Google Scholar 

  25. Kern KB, Hilwig RW, Berg RA, et al (1997) Postresuscitation left ventricular systolic and diastolic dysfunction. Treatment with dobutamine. Circulation 95:2610–2613

    CAS  Google Scholar 

  26. Vasquez A, Kern KB, Hilwig RW, et al (2004) Optimal dosing of dobutamine for treating post-resuscitation left ventricular dysfunction. Resuscitation 61:199–207

    Article  PubMed  CAS  Google Scholar 

  27. Huang L, Weil MH, Tang W, et al (2005) Comparison between dobutamine and levosimendan for management of postresuscitation myocardial dysfunction. Crit Care Med 33:487–491

    Article  PubMed  CAS  Google Scholar 

  28. Kakavas S, Chalkias A, Xanthos T (2011) Vasoactive support in the optimization of post-cardiac arrest hemodynamic status: from pharmacology to clinical practice. Eur J Pharmacol 667:32–40

    Article  PubMed  CAS  Google Scholar 

  29. Morrison LJ, Deakin CD, Morley PT, et al (2010) Part 8: Advanced Life Support 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation 122:S345–S421

    Article  PubMed  Google Scholar 

  30. Deo R, Albert CM (2012) Epidemiology and genetics of sudden cardiac death. Circulation 125:620–637

    Article  PubMed Central  PubMed  Google Scholar 

  31. Spaulding CM, Joly LM, Rosenberg A, et al (1997) Immediate coronary angiography in survivors of out-of-hospital cardiac arrest. N Engl J Med 336:1629–1633

    Article  PubMed  CAS  Google Scholar 

  32. Dumas F, Cariou A, Manzo-Silberman S, et al (2010) Immediate Percutaneous Coronary Intervention Is Associated With Better Survival After Out-of-Hospital Cardiac ArrestClinical Perspective Insights From the PROCAT (Parisian Region Out of Hospital Cardiac Arrest) Registry. Circ Cardiovasc Interv 3:200–207

    Article  PubMed  Google Scholar 

  33. Gräsner JT, Meybohm P, Caliebe A, et al (2011) Postresuscitation care with mild therapeutic hypothermia and coronary intervention after out-of-hospital cardiopulmonary resuscitation: a prospective registry analysis. Crit Care Lond Engl 15:R61

    Article  Google Scholar 

  34. Cronier P, Vignon P, Bouferrache K, et al (2011) Impact of routine percutaneous coronary intervention after out-of-hospital cardiac arrest due to ventricular fibrillation. Crit Care Lond Engl 15: R122

    Article  Google Scholar 

  35. Sideris G, Voicu S, Dillinger JG, et al (2011) Value of postresuscitation electrocardiogram in the diagnosis of acute myocardial infarction in out-of-hospital cardiac arrest patients. Resuscitation 82:1148–1153

    Article  PubMed  Google Scholar 

  36. Chelly J, Mongardon N, Dumas F, et al (2012) Benefit of an early and systematic imaging procedure after cardiac arrest: insights from the PROCAT (Parisian Region Out of Hospital Cardiac Arrest) registry. Resuscitation 83:1444–1450

    Article  PubMed  Google Scholar 

  37. Anyfantakis ZA, Baron G, Aubry P, et al (2009) Acute coronary angiographic findings in survivors of out-of-hospital cardiac arrest. Am Heart J 157:312–318

    Article  PubMed  Google Scholar 

  38. Voicu S, Sideris G, Deye N, et al (2012) Role of cardiac troponin in the diagnosis of acute myocardial infarction in comatose patients resuscitated from out-of-hospital cardiac arrest. Resuscitation 83:452–458

    Article  PubMed  CAS  Google Scholar 

  39. Dumas F, Manzo-Silberman S, Fichet J, et al (2012) Can early cardiac troponin I measurement help to predict recent coronary occlusion in out-of-hospital cardiac arrest survivors? Crit Care Med 40:1777–1784

    Article  PubMed  CAS  Google Scholar 

  40. Wijns W, Kolh P, Danchin N, et al (2010) Guidelines on myocardial revascularization. Eur Heart J 31:2501–2555

    Article  PubMed  Google Scholar 

  41. Wald DS, Morris JK, Wald NJ, et al (2013) Randomized trial of preventive angioplasty in myocardial infarction. N Engl J Med 369:1115–1123

    Article  PubMed  CAS  Google Scholar 

  42. Bernard SA, Gray TW, Buist MD, et al (2002) Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 346:557–563

    Article  PubMed  Google Scholar 

  43. Hypothermia after Cardiac Arrest Study Group (2002) Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 346:549–556

    Article  Google Scholar 

  44. Delhaye C, Mahmoudi M, Waksman R (2012) Hypothermia therapy: neurological and cardiac benefits. J Am Coll Cardiol 59: 197–210

    Article  PubMed  Google Scholar 

  45. Chenoune M, Lidouren F, Adam C, et al (2011) Ultrafast and whole-body cooling with total liquid ventilation induces favorable neurological and cardiac outcomes after cardiac arrest in rabbits. Circulation 124:901–911

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Ye S, Weng Y, Sun S, et al (2012) Comparison of the durations of mild therapeutic hypothermia on outcome after cardiopulmonary resuscitation in the rat. Circulation 125:123–129

    Article  PubMed  Google Scholar 

  47. Hsu CY, Huang CH, Chang WT, et al (2009) Cardioprotective effect of therapeutic hypothermia for postresuscitation myocardial dysfunction. Shock Augusta Ga 32:210–216

    Article  Google Scholar 

  48. Zobel C, Adler C, Kranz A, et al (2012) Mild therapeutic hypothermia in cardiogenic shock syndrome. Crit Care Med 40: 1715–1723

    Article  PubMed  Google Scholar 

  49. Thiele H, Zeymer U, Neumann FJ, et al (2012) Intraaortic balloon support for myocardial infarction with cardiogenic shock. N Engl J Med 367:1287–1296

    Article  PubMed  CAS  Google Scholar 

  50. Tennyson H, Kern KB, Hilwig RW, et al (2002) Treatment of post resuscitation myocardial dysfunction: aortic counterpulsation versus dobutamine. Resuscitation 54:69–75

    Article  PubMed  Google Scholar 

  51. Manzo-Silberman S, Fichet J, Mathonnet A, et al (2013) Percutaneous left ventricular assistance in post cardiac arrest shock: Comparison of intra aortic blood pump and IMPELLA Recover LP2.5. Resuscitation 84:609–615

    Article  PubMed  Google Scholar 

  52. Combes A, Leprince P, Luyt CE, et al (2008) Outcomes and long-term quality-of-life of patients supported by extracorporeal membrane oxygenation for refractory cardiogenic shock. Crit Care Med 36:1404–1411

    Article  PubMed  Google Scholar 

  53. Wu MY, Lee MY, Lin CC, et al (2012) Resuscitation of nonpostcardiotomy cardiogenic shock or cardiac arrest with extracorporeal life support: the role of bridging to intervention. Resuscitation 83:976–981

    Article  PubMed  Google Scholar 

  54. Sakamoto S, Taniguchi N, Nakajima S, et al (2012) Extracorporeal life support for cardiogenic shock or cardiac arrest due to acute coronary syndrome. Ann Thorac Surg 94:1–7

    Article  PubMed  Google Scholar 

  55. Cour M, Loufouat J, Paillard M, et al (2011) Inhibition of mitochondrial permeability transition to prevent the post-cardiac arrest syndrome: a pre-clinical study. Eur Heart J 32:226–235

    Article  PubMed  Google Scholar 

  56. Niemann JT, Youngquist S, Rosborough JP, et al (2010) Infliximab attenuates early myocardial dysfunction after resuscitation in a swine cardiac arrest model. Crit Care Med 38:1162–1167

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  57. Fang X, Tang W, Sun S, et al (2006) delta-Opioid-induced pharmacologic myocardial hibernation during cardiopulmonary resuscitation. Crit Care Med 34:S486–S489

    Article  PubMed  CAS  Google Scholar 

  58. Sun S, Weil MH, Tang W, et al (2004) Delta-opioid receptor agonist reduces severity of postresuscitation myocardial dysfunction. Am J Physiol Heart Circ Physiol 287:H969–H974

    Article  PubMed  CAS  Google Scholar 

  59. Cammarata G, Weil MH, Sun S, et al (2004) Beta1-adrenergic blockade during cardiopulmonary resuscitation improves survival. Crit Care Med 32:S440–S443

    Article  PubMed  CAS  Google Scholar 

  60. Huang CH, Hsu CY, Tsai MS, et al (2008) Cardioprotective effects of erythropoietin on postresuscitation myocardial dysfunction in appropriate therapeutic windows. Crit Care Med 36:S467–S473

    Article  PubMed  Google Scholar 

  61. Niemann JT, Garner D, Khaleeli E, et al (2003) Milrinone facilitates resuscitation from cardiac arrest and attenuates postresuscitation myocardial dysfunction. Circulation 108:3031–3035

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Cariou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bougouin, W., Cariou, A. Dysfonction myocardique post-arrêt cardiaque. Réanimation 23, 195–201 (2014). https://doi.org/10.1007/s13546-014-0849-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13546-014-0849-1

Mots clés

Keywords

Navigation