Skip to main content
Log in

Analysis and testing of PSO variants through application in EEG/ERP adaptive filtering approach

  • Original Article
  • Published:
Biomedical Engineering Letters Aims and scope Submit manuscript

Abstract

Introduction

An improved method for adaptive noise canceller (ANC) is proposed for electroencephalography (EEG)/event related potential (ERP) filtering in case of EEG self interference. ANC is implemented through five versions of Particles Swarm Optimization (PSO) technique.

Methods

A comparative study of the performance of PSO and its different versions such as constant weighted inertia PSO (CWI PSO), linear decay inertia PSO (LDI-PSO), constriction factors inertia PSO (CFI-PSO), nonlinear inertia PSO (NLI-PSO), and dynamic inertia PSO (DI-PSO) has been done. Fidelity parameters like signal to noise ratio (SNR) in dB, correlation between resultant and template ERP, and mean square error (MSE) are observed with varying range of particles and inertia weights.

Results

In this the results of two data sets, simulated ERP and real visual evoked potential (VEP) are compared. Fidelity parameters as well as quality (shape) of extracted ERP are determined with Kurtosis and skewness measures.

Conclusions

From the simulation results and comparative studies, it is found that that NLI and LDI version of PSO are most suitable for ANC for ERP filtering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sanei S, Chambers JA. EEG signal processing, John Wiley & Sons Ltd. 2007.

  2. Zhang JH, Janschek K, Bohme JF, Zeng YJ. Multi-resolution dyadic wavelet denoising approach for extraction of visual evoked potentials in the brain. IEE P-Vis Image Sign. 2004; 151(3):180–186.

    Article  Google Scholar 

  3. Aydin S. Comparison of Basic linear filters in extracting auditory evoked potentials. Turk J Elect Eng. 2008; 16(2):111–123.

    MathSciNet  Google Scholar 

  4. Odom JV, Bach M, Barber C, Brigell M, Marmor MF, Tormene AP, Holder GE. Visual evoked potentials standard. Doc Ophthalmol. 2004; 108:115–123.

    Article  Google Scholar 

  5. Sano A, Bakardjian H. Movement-related cortical evoked potentials using four-limb imagery. Int J Neurosci. 2009; 119(5):639–663.

    Article  Google Scholar 

  6. Rao R, Scherer R. Brain-computer interfacing [in the spotlight]. IEEE Signal Proc Mag. 2010; 27(4):147–150.

    Article  Google Scholar 

  7. Machado S, Araújo F, Paes F, Velasques B, Cunha M, Budde H, Basile LF, Anghinah R, Arias-Carrión O, Cagy M, Piedade R, Graaf TA, Sack AT, Ribeiro P. EEG-based brain-computer interfaces: an overview of basic concepts and clinical applications in neurorehabilitation. Rev Neurosci. 2010; 21(6):451–468.

    Google Scholar 

  8. Croft RJ, Barry RJ. Removal of ocular artifacts: a review. Clin Neurophysiol Elsevier. 2000; 30(1):5–19.

    Google Scholar 

  9. Rajapakse JC, Cichocki A, Sanchez VD. Independent component analysis and beyond in brain imaging: EEG, MEG, fMRI, and PET. Neural Inform Process. 2002; 1:404–412.

    Google Scholar 

  10. Pfurtscheller G, Silva FHL. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol. 1999; 110(11):1842–1857.

    Article  Google Scholar 

  11. Yeung N, Bogacz R, Holroyd CB, Cohen JD. Detection of synchronized oscillations in the electroencephalogram: an evaluation of methods. Psychophysiol. 2004; 41:822–832.

    Article  Google Scholar 

  12. James CJ, Hagan MT, Jones RD, Bones PJ, Carroll GJ. Multireference adaptive noise canceling applied to the EEG. IEEE T Bio-med Eng. 1997; 44(8):775–779.

    Article  Google Scholar 

  13. Jung TP, Makeig S, Westerfield M, Townsend J, Courchesne E, Sejnowski TJ. Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects. Clin Neurophysiol. 2000; 111(10):1745–1758.

    Article  Google Scholar 

  14. Makeig S, Bell AJ, Jung TP, Sejnowski TJ. Independent component analysis of electroencephalographic data. Adv Neural Inf Process Sys. 1996; 8:145–151.

    Google Scholar 

  15. Lee PL, Hsieh JC, Wu CH, Shyu KK, Chen SS, Yeh TC, Wu YT. The brain computer interface using flash visual evoked potential and independent component analysis. Ann Biomed Eng. 2006; 34(10):1641–1654.

    Article  Google Scholar 

  16. Verobyov S, Cichocki A. Blind noise reduction for multisensory signals using ICA and subspace filtering with application to EEG analysis. Biol Cybern. 2002; 86(4):293–303.

    Article  Google Scholar 

  17. Wang Z, Maier A, Leopold DA, Logothetis NK, Liang H. Single-trial evoked potential estimation using wavelets. Comput Biol Med. 2007; 37(4):463–473.

    Article  Google Scholar 

  18. Quiroga RQ, Garcia H. Single-trial event-related potentials with wavelet denoising. Clin Neurophysiol. 2003; 114(2):376–390.

    Article  Google Scholar 

  19. Zhang JH, Janschek K, Bohme JF, Zeng YJ. Multi-resolution dyadic wavelet denoising approach for extraction of visual evoked potentials in the brain. IEE P-Vis Image Sign. 2004; 151(3):180–186.

    Article  Google Scholar 

  20. Widrow B, et al. Adaptive noise cancellation: principles and applications. Proc IEEE. 1975; 63:1692–1716.

    Article  Google Scholar 

  21. He P, Wilson G, Russell C. Removal of ocular artifacts from electroencephalogram by adaptive filtering. Med Biol Eng Comput. 2004; 42(3):407–412.

    Article  Google Scholar 

  22. Selvan S, Srinivasan R. Removal of ocular artefacts from EEG using an efficient neural network based adaptive filtering technique. IEEE Signal Proc Let. 1990; 6(12):330–332.

    Article  Google Scholar 

  23. Svensson O. tracking of changes in latency and amplitude of the evoked potential by using adaptive LMS filters and exponential averages. IEEE T Bio-med Eng. 1993; 40(10):1074–1079.

    Article  Google Scholar 

  24. Krusienski DJ, Jenkins WK. Design and performance of adaptive systems based on structured stochastic optimization strategies. Circuits Syst Mag IEEE. 2005; 5(1):8–20.

    Article  Google Scholar 

  25. Krusienski DJ, Jenkins WK. Adaptive filtering via particle swarm optimization. Conf Signal Syst Comput. 2003; 1:571–575.

    Google Scholar 

  26. Mahbub U, Shahnaz C, Fattah SA. An adaptive noise cancellation scheme using particle swarm optimization algorithm. IEEE Int Conf Commun Cont Comput Tech (ICCCCT). 2010; 683–6.

  27. Al-Awami AT, Zerguine A, Cheded L, Zidouri A, Saif W. A new modified particle swarm optimization algorithm for adaptive equalization. Digit Signal Process. 2011; 21(2):195–207.

    Article  Google Scholar 

  28. Diniz PSR. Adaptive filtering: algorithms and practical implementation. Springer. 2008; 54–68.

  29. Kennedy J, Eberhart RC. Particle swarm optimization. Proc IEEE Int Conf N.N. 1995; 4:1942–1948.

    Google Scholar 

  30. Poli R, Kennedy J, Blackwell T. Particle swarm optimization: an overview. Swarm Intell. 2007; 1:33–57.

    Article  Google Scholar 

  31. Parsopoulos KE, Vrahatis MN. Particle swarm optimization and intelligence: advances and applications. Inform Sci Ref. 2010; 25–40.

  32. Shi Y, Eberhart R. A modified particle swarm optimizer. IEEE Comput Intell. 1998; 69–73.

  33. Chatterjee A, Siarry P. Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization. Comput Oper Res. 2006; 33:859–871.

    Article  MATH  Google Scholar 

  34. Eberhart RC, Shi Y. Tracking and optimizing dynamic systems with particle swarms. Proc Evol Comput. 2001; 1:94–100.

    Google Scholar 

  35. Fang H, Chen L, Wang W. Comparison of PSO algorithm and its variants to optimal parameters of PID controller. Contr Decis Conf. 2008; 3100–3104.

  36. Parsa V, Parker PA, Scott RN. Adaptive stimulus artifact reduction in noncortical somatosensory evoked potential studies. IEEE T Bio-med Eng. 1998; 45(2):165–179.

    Article  Google Scholar 

  37. Generation of simulated EEG data [http://www.cs.bris.ac.uk/~rafal/phasereset/]

  38. http://www.vis.caltech.edu/~rodri/data.htm [Rodrigo Quian Quiroga — EEG, ERP and single cell recordings database]

  39. Wu X, Ye Z. The study of classification of motor imaginaries based on kurtosis of EEG. Lecture Notes Comput Sci. 2006; 3:74–81.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahirwal, M.K., Kumar, A. & Singh, G.K. Analysis and testing of PSO variants through application in EEG/ERP adaptive filtering approach. Biomed. Eng. Lett. 2, 186–197 (2012). https://doi.org/10.1007/s13534-012-0071-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13534-012-0071-x

Keywords

Navigation